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1. Abstract
Wildfires in the southeastern US are understood less than those in other portions of the nation. In October and November 2016, over sixty individual wildfires ignited among seven states in the Southern Appalachian region. These fires damaged hundreds of buildings, caused numerous power outages, and resulted in fatalities. These unusually destructive events highlight the need to improve awareness of fire susceptibility and risk in the southeastern US. The US Forest Service requires a thorough understanding of wildfire vulnerability, damage, and recovery to effectively help local communities respond to and prepare for these events. The University of Georgia NASA DEVELOP team partnered with US Forest Service Southern Research Station to assess vegetation dynamics before and after the 2016 wildfire events, focusing on GA, NC, and TN. This was accomplished by utilizing Landsat 8 OLI, Terra ASTER, and Terra MODIS data to evaluate land cover changes from October to December 2016 and assess the severity of these fires. In addition, this project incorporated demographic data to examine the association between fire risk and under-managed lands, such as heirs’ properties, and to construct a model of social vulnerability to wildland fire hazards in the study area. The results of this project provided researchers at the US Forest Service with an increased understanding of how property ownership and community management practices can affect future wildfires, as well as how the spatial distribution of socioeconomic variables affects residents’ ability to adapt and recover.
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2. Introduction
2.1 [bookmark: _Toc334198721]Background Information
The threat of wildfires has increased and is anticipated to intensify in the future, driven by human and natural forces such as changes in climate, human population growth, and vegetation change (Pechony & Shindell, 2010). A better understanding of wildfire risks, particularly in the Southeastern United States, is needed as some climate models predict that droughts will become more common in Appalachia in the future leading to more wildfires (Boddy, 2016). Fall of 2016 was an unusually destructive fire season for the region, with nearly 60 individual wildfires in seven states around the southern Appalachian Mountains (Georgia, Tennessee, North Carolina, South Carolina, Kentucky, West Virginia, Virginia). The fires damaged hundreds of buildings, caused multiple power outages, and led to the evacuation of several populated areas. Over 15,000 acres within the Great Smoky Mountains National Park, a designated UNESCO World Heritage Site and one of the world’s most biologically diverse forests, and the adjacent tourist areas of Gatlinburg and Pigeon Forge, are estimated to have burned over a two-day period, from November 28th to November 29th, 2016. Some environmental factors that contributed to the extraordinary fire intensity and propagation in these areas include the presence of 90 mile per hour winds, low humidity, drought conditions, and the abundance of high fuel loads.

While both wildfire and prescribed fire have been integral to ecosystem function across the southern US, fire can pose risks to local communities in regards to medical, economic, financial, and other burdens (Gan et al., 2015). Although there have been intensive studies on the fire ecology of the region and the physical wildfire risk factors, much less attention has been devoted to simultaneously identifying socio-economic drivers related to the spread of wildfires and their impact on communities. In a previous term, this project developed a fire vulnerability model based on biophysical factors. This term’s work takes into account the current understanding of hazards and disasters as inherently social; while physical factors drive the nature of the hazard event itself, socioeconomic conditions determine its impact on human communities, (Haque & Etkin, 2007; Wisner et al., 2004). Because this impact is geographically uneven, social vulnerability indices (SVI) have been used to quantify place-based levels of susceptibility and resilience. A SVI is produced by integrating measures of physical exposure, population sensitivity, and adaptive capacity (Cutter, Boruff, & Shirley, 2003).
This project also considers heirs’ properties, defined as any real property with multiple owners whose names are not explicitly noted on property deeds. Gaither et al. (2011) suggest that unclear ownership of these lands complicates management practices, potentially contributing to increased fuel loads and making these parcels and adjacent parcels more susceptible to fires. Some communities in the study area have Community Wildfire Protection Plans (CWPPs) and/or are designated as Firewise Communities, indicating that they engage in fire suppression efforts (Figure 1.2). Gaither et al. (2011) contends that, in the Southeastern United States, communities with high social vulnerability are less likely to have CWPPs or to be Firewise Communities.

The study area for this project concentrated on three states that were heavily affected by fire events in the fall of 2016, including parts of Georgia, Tennessee, and North Carolina (Figure 1.1). Forest resource agencies and local communities require a more thorough understanding of areas that are at an increased risk for wildfire and will be able to use our model to better allocate attention to high risk communities.
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Figure 1. Southern Appalachian project area including parts of GA, TN, and NC
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Figure 2. CWPP and Firewise Communities locations: Southern Appalachian GA, TN, NC


2.2 Project Partners & Objectives
This project falls under the Disasters application area of NASA’s Applied Science Program, which supports disaster reduction across several disaster types, including wildfires. Earth observations via remote sensing are readily available and particularly useful in analyzing large areas that have already suffered from natural disasters or may be subject to them in the future. This Southern Appalachia Disasters project utilizes remotely sensed data to evaluate a southern sub-region heavily impacted by wildfires in the fall of 2016. The main objectives of this project were to use NASA satellite imagery to: (1) explore the physical, biological, and social factors that may lead to increased wildfire susceptibility within the Southern Appalachian study region, and (2) create an integrated wildfire vulnerability model that can be used by our partners to narrow mitigation efforts and allocate resources toward communities and regions that are most at risk.

While both wildfire and prescribed fire have been integral to ecosystem function across the southern US, fire can pose risks to local communities in regard to medical, economic, financial, and other burdens (Gan et al., 2015). Although there have been intensive studies on the fire ecology of the region and the physical wildfire risk factors, much less attention has been devoted to simultaneously identifying socio-economic drivers related to the spread of wildfires and their impact on communities. In a previous term, this project developed a fire vulnerability model based on biophysical factors. This term’s work takes into account the current understanding of hazards and disasters as inherently social; while physical factors drive the nature of the hazard event itself, socioeconomic conditions determine its impact on human communities, (Haque & Etkin, 2007; Wisner et al., 2004). Because this impact is geographically uneven, social vulnerability indices (SVI) have been used to quantify place-based levels of susceptibility and resilience. A SVI is produced by integrating measures of physical exposure, population sensitivity, and adaptive capacity (Cutter, Boruff, & Shirley, 2003).

Our project partner, at the US Forest Service’s Southern Research Station, is currently developing methods to properly treat areas of concern in southern Appalachia through three primary goals: restoration, regeneration, and fuel reduction (Waldrop, 2016). Recently, the Forest Service has performed thinning treatments and prescribed burns to areas in the southeastern US where there have been multi-year droughts. Studies conducted by the Southern Research Station have focused on excessive fuel loading, management policies related to human alteration of local ecosystems, and both the use and effectiveness of prescribed burns. These studies are long-term and require additional field observations to determine forest sustainability (Prestemon et al., 2016).  
[bookmark: _Toc334198726]3. Methodology
3.1 Data Acquisition
Prior to data acquisition, the DEVELOP team conducted a literature review on the topics of vulnerability and wildfire modeling as well as a review of previous DEVELOP projects that focused on disaster modeling. Furthermore, our team interviewed fire ecology experts from the US Forest Service Rocky Mountain Research Station in order to gain a more comprehensive understanding of wildfire risk and functionality. Based on our findings, 9 biophysical risk factors were identified and 19 socioeconomic variables to incorporate into our GIS-based wildfire vulnerability model (Figure 3.1).
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Figure 3. Components of integrated wildfire vulnerability index with data sources
ForWarn, a MODIS based data collection retrieved from the US Forest Service, provided data of recent decline of both deciduous and evergreen vegetation. Both were used as model parameters under the assumption that areas of recent vegetation decline would have an abundance of dead, woody vegetation that could burn intensely if ignited. Similarly, normalized difference vegetation indices (NDVI) values were used as an indicator of potential fuel presence with higher values representing dense vegetation and fuel abundance and lower values representing barren areas that are at a low risk for fire ignition and propagation. NDVI use in large-scale wildfire modeling has been widely used (Helman et al., 2015; Cao et al., 2013; Escuin et al., 2008). Normalized difference moisture index (NDMI) analysis provided the team with a notion of vegetation moisture prior to the fall 2016 fire events. Intuitively, areas with NDMI values indicative of low moisture content were deemed to be at a higher risk for wildfire. Lastly, land cover types were assigned risk values according to their likelihood to burn intensely. Canopy presence and impervious surface density were incorporated into the model as well.

As for physical risk indicators, wildfire studies and literature indicate that the topography of a region can contribute to wildfire risk (Pyne et al., 1996; Rothermal, 1983). Terra ASTER DEM data accounted for the topographic variables of slope and aspect in our Southern Appalachia study region at a 30m resolution. Areas with steep slopes were assigned higher risk values as fire tends to spread quickly towards higher elevations. In regards to aspect, areas facing south or southwest were given higher risk values since they are known to receive more sunlight and consequently have a higher probability of ignition. Similarly, areas facing towards the north were assigned lower risk values as they receive less light (Table B1). Our approach to account for topography in our physical risk index relied heavily on prior methodology outlined by Ercanoglu et al. (2016) for modeling wildfire susceptibility. 

The Terra and Landsat 8 satellites provided the majority of the data used in creating a wildfire risk model. Landsat 8 Operational Land Imager (OLI) images were obtained from the United States Geological Survey (USGS) EarthExplorer website. Four pre-fire scenes, Landsat 8 OLI/TIRS C1 Level-1 products, corresponding to path and rows: LC80190362016244LGN00, LC80190352016244LGN00, LC80180362016285LGN00, and LC80180352016285LGN00 were downloaded and provided coverage of the entire study area. NDVI and normalized difference moisture indices (NDMI) were each calculated from the Landsat 8 OLI images. A digital elevation map (DEM) created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra satellite provided our team with terrain relief data used in our fire risk analysis. The AST14DEM: ASTER Digital Elevation Model V003 was also retrieved from EarthExplorer. The Moderate Resolution Imaging Spectroradiometer (MODIS), also aboard the Terra satellite, supplied valuable phenological data of our study region including the decline of evergreen and deciduous vegetation. This ForWarn data was preprocessed and received directly from the US Forest Service Eastern Forest Environmental Threat Assessment Center.

Due to the availability of parcel-level CAMA data for Rabun County GA, which was also affected by the Rock Mountain fire, a smaller subset in the area of interest was chosen to investigate wildfire susceptibility at a higher resolution (10 meters). The higher resolution version of the original fire risk model was calculated for the subset using 10 m resolution DEM, for slope and aspect, taken from the National Elevation Dataset (NED). Land cover was derived at the same resolution using Sentinel-2 datasets, using pre, mid and post-fire scenes covering four counties (Clay, Macon, Rabun, Towns) affected by the Rock Mountain Fire as seen in Figure 3.2.

Additional biophysical inputs for our model came from the National Land Cover Database (NLCD) for 2011 obtained from the Multi-Resolution Land Characteristics Consortium (MRLC) website. This dataset utilized a new Comprehensive Change Detection Method (CCDM) which applied spectral-based change detection algorithms nuanced by 16 zones of differing rates and directions of forest regeneration (Jin et al, 2013). For this study we incorporated land cover type, canopy cover, and impervious surface data at 30 meters resolution to carry out our analysis. All ancillary data provided was fitted to the project study region (Table B2).

Data on demographic indicators of vulnerability, selected based on existing literature, were sourced from the American Community Survey 2011-2015 Five Year Estimates (Table B4). Datasets were downloaded at the Census block group level, the highest resolution for which all the variables were available. In addition, Computer-Assisted Mass Appraisal (CAMA) data were acquired from assessment and taxation departments for selected Georgia counties. The CAMA system includes records on property ownership and taxation and was used to identify parcels likely to be heirs’ properties.
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Figure 4. DEM of study area including subset

3.2 Data Processing
A variety of data processing steps were taken to form the nine raster images that served as inputs into the GIS model. Sentinel-2 Surface Reflectance bands were pre-processed in ESA SNAP software including resampling and clipping. Atmospheric corrections for bands 4, 8A, 11 & 12 corresponding to red and near infrared, short wave infrareds 1 & 2 respectively, were carried out for Rayleigh scattering based on a radiative transfer model that uses sun-sensor geometry and study area elevation (Gordon, 1995 in Page, 2017). Besides using these bands to calculate NDVI and NDMI, we also derived NBRI for each 10 m pixel to provide estimates of vegetation greenness and fuel content, moisture and burn severity respectively (Equations 1 - 3). NBRI or Normalized Burn Ratio Index, is particularly useful for estimating forest fire severity (Norton, 2006)
						        (1)
					        (2)
					        (3)

Due to the different resolutions of the two biophysical models, two different DEMs were used.  The ASTER DEMs were mosaics from seven scenes and used for the complete three state study area with 30 m resolution. NED DEMs were used for the higher resolution subset of Rabun county and surrounding area at 10 m resolution. The DEMs were acquired in non-continuous datasets and were mosaicked across the study areas. They were then clipped to produce continuous elevation data layers. Both DEMs were further processed using the ArcToolbox 3D Analyst functions “Aspect” and “Slope” to provide us with aspect and steepness values respectively. Several additional datasets were acquired and formatted appropriately for input to ArcMap. These included ForWarn phenological data and land cover datasets. Appendix C provides a summary of all the data processing undergone for the fire risk model.

Once the nine raster images for each of our model parameters were generated, they needed to be reclassified to a common scheme. Since our project partner was interested in a model that assigned categorical rankings to areas based on low, medium, or high fire risk, each of the rasters were reclassified to values of 1, 2, and 3, respectively. The reclassification of the raster data into three separate groups was based on natural Jenks classification scheme in ArcMap software. The last data processing step involved using the “Raster Calculator” tool in ArcToolbox to weigh each of the nine rasters and combine them into a single raster image representing the cumulative wildfire risk for our study area (Table B3).

A composite index for the entire study area was generated by adding the rasterized social vulnerability index to the 30 m biophysical risk raster. For the Rabun County subset, the 10 m biophysical raster was integrated with the social vulnerability index and heirs’ property parameters (status of property title, age of deed, tax status and land use class). Due to the different resolutions of the two biophysical models, two different DEMs were used.  The ASTER DEMs were mosaics from seven scenes and used for the complete three state study area with 30 m resolution. NED DEMs were used for the higher resolution subset of Rabun county and surrounding area at 10 m resolution. The DEMs were acquired in non-continuous datasets and were mosaicked across the study areas. They were then clipped to produce continuous elevation data layers. Both DEMs were further processed using the ArcToolbox 3D Analyst functions “Aspect” and “Slope” to provide us with aspect and steepness values respectively. Several additional datasets were acquired and formatted appropriately for input to ArcMap. These included ForWarn phenological data and land cover datasets. Appendix C provides a summary of all the data processing undergone for the fire risk model.

Once the nine raster images for each of our model parameters were generated, they needed to be reclassified to a common scheme. Since our project partner was interested in a model that assigned categorical rankings to areas based on low, medium, or high fire risk, each of the rasters were reclassified to values of 1, 2, and 3, respectively. The reclassification of the raster data into three separate groups was based on natural Jenks classification scheme in ArcMap software. The last data processing step involved using the “Raster Calculator” tool in ArcToolbox to weigh each of the nine rasters and combine them into a single raster image representing the cumulative wildfire risk for our study area (Table B3).

Demographic data were aggregated to the block group level and converted from counts to proportions. Z-score standardization was used ensure that all the variables were measured along the same scale. A principal component analysis (PCA) was used to reduce the dimensionality of the dataset by grouping related variables and to estimate the relative importance of each variable. It returned five principal components representing income, ethnicity, housing characteristics, gender, and urban development. The components were weighted based on loadings derived from the PCA, then combined into a single standardized social vulnerability score as seen in Figure 3.3. 

A composite index for the entire study area was generated by adding the rasterized social vulnerability index to the 30 m biophysical risk raster. For the Rabun County subset, the 10 m biophysical raster was integrated with the social vulnerability index and heirs’ property parameters (status of property title, age of deed, tax status and land use class).
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Figure 5. Social vulnerability index (left) integrated vulnerability index (right)

3.3 Data Analysis
The higher resolution fire model was compared and utilized to help improve and nuance the vulnerability model based on local ground conditions. Besides enhancing the resolution, particularly for slope and aspect, the higher resolution model utilized atmospheric corrections with the expectation that it will reduce the radiative effects of atmospheric column on the radiance values of the remote sensing images. Scattering and absorption of light by aerosols, clouds and haze, and ionospheric effects are known to significantly affect the images captured by earth observation platforms (Jensen, 2005). 
In the first term of this project, we validated the biophysical risk model by comparing it with polygon boundaries of actual 2016 fires. In other words, the majority of the burned area was predicted by the model to be at high risk for fire (Appendix E).
While the biophysical risk model represents factors that influence the spread of wildfire, the social vulnerability index is a measure of the population’s resilience and ability to recover from a fire event. Together, they provide an insight into locating “hotspots” that have both high biophysical rise and high social vulnerability to wildfires, and would thus be more severely affected by wildfires than areas with similar biophysical risk but low social vulnerability. Because resilience and recovery can be interpreted in many ways, it is difficult to quantitatively validate a social vulnerability index. As a result, our integrated vulnerability index is intended primarily as an exploratory tool to better understand which communities might need greater assistance in coping with a natural disaster.
[bookmark: _Toc334198730]4. Results & Discussion
4.1 Analysis of Results
The biophysical model designed in the first term of this project demonstrated its predictive capabilities by classifying the study area into high, medium and low risk areas. The second term’s biophysical wildfire risk model does appear to show improvements in how our study region was classified into areas of high, medium, and low wildfire risk. The model can be used by the US Forest Service to focus their prevention planning and allocate their resources to areas most at risk for fire events in the near future. The DEVELOP team was able to compare the 2016 wildfire extents with model outputs to generate summary statistics. This allowed the team to gain a better understanding of where these fire events occurred within the context of the model results and what environmental factors represented the perimeter of these events. 
Model 1: Resolution 30 meters
Without atmospheric correction
Model 2: Resolution 10 meters
With Rayleigh correction
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  Figure 6. Wildfire vulnerability model comparisons of Term 1 and Term 2 results

Figure 4.1 compares higher resolution atmospherically corrected biophysical model to obtain following results. 
As expected, the higher resolution provided greater nuance to the ground conditions in the study area subset. However, the Rayleigh correction brought out a marked difference in the models, by essentially enhancing the moisture and vegetation greenness values in the NDMI and NDVI layers. Due to this, there is a measurable reduction in wildfire susceptibility in low-lying areas around water bodies (as shown by the green colors) and much higher susceptibility in other areas particularly in forested high elevations. This was tested using known fire incident areas within the subset of the study area, to see how well the two models were able to match fire susceptibility with actual fire extents and severity. The graphs show that, for the majority of the fire incidents, the atmospheric corrections provided a higher match. For example, the figures for Rock Mountain, Boteler and Knob, respectively showed high severity matches of 45%, 31%, 54% for model 1 and 72%, 77%, 70% for model 2.

An exploratory analysis of this term’s integrated vulnerability index identified areas at high risk for wildfire and also have populations that are especially sensitive, based on our parameters. To better represent the nuances of the social and biophysical indices, the results were then visualized in a map with a bivariate color scheme as seem in Figure 4.2. This representation brings to light areas that score highly in one index and low in the other, as well places that are “hotspots” based on both indices. For example, areas in with relatively high social vulnerability but low risk of wildfire are colored turquoise, while areas with the highest levels of biophysical risk and social vulnerability are dark blue.
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  Figure 7. Bivariate map of study area and subset

[bookmark: _Toc334198734]There are a few limitations of our study that should be noted. First, our biophysical model does not account for wind, which undoubtedly plays an important role in the spread of wildfires. Nine biophysical inputs to our model were chosen as well as their associated weights based on literature review and input from our project partners, there are likely some other important risk factors that would enhance the model. While some of the inputs to our model remained relatively constant through time (such as slope, aspect, land cover type, etc.) other inputs such as NDVI and NDMI can change significantly from year to year and may affect the accuracy and usefulness of our wildfire risk model in the future.

4.2 Future Work
Further analysis could be done to better calibrate our final model. A wider variety of inputs, particularly ones that take into account weather patterns, could be incorporated into the wildfire risk model and experimented with, using multivariate logistic regression to ultimately determine which of the inputs are most important to the model. While the current framework of our model seems to be effective, future work could be done to transform it from a static model to a dynamic model using a platform such as Google Earth Engine. This could provide nearly real-time updates to the model to better represent changes within the study area, particularly in regards to NDVI and NDMI values. 
To address the limitations of the social vulnerability index, a mixed-methods in situ investigation into the social processes specific to our study area would be productive. Further analysis could also be done to examine health effects of wildfires, specifically the potential effects of aerosol and particulates on respiratory conditions. Additionally, preliminary examination from this term of fire suppression difficulty could be expanded upon to provide our project partners with information useful in their response to wildfires. 
With regard to the social vulnerability index, it is important to acknowledge the modifiable areal unit problem, that is, aggregating demographic data into polygons obscures variation within those areas. This is a standard caveat of any geospatial study of social conditions. In addition, social vulnerability indices require some assumptions about the role that various demographic factors play in vulnerability; reality at the neighborhood and body scales has much greater complexity than such a representation can capture.
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Figure 8. Integrated vulnerability index (right) Dasymetric Map of Hotspot within study area (left)

[bookmark: _Toc334198735]As can be seen from this inset of the bio-social vulnerability map, arbitrary boundaries of block-group based census data create boundary artifacts in the bio-social model which do not reflect the actual population distribution in that area. This gives us a potential direction for the next steps in social vulnerability mapping.Population density grid (500 meters), derived from projected world population grid of 2015. A significant portion of this area is covered by Eastern Band Cherokee Lands

5. Conclusions
The 2016 wildfire events in the southeastern US resulted in evacuations, economic hardships, and even loss of life. These events highlighted the need for better preparation and increased mitigation measures moving forward. The DEVELOP team examined the biological and physical wildfire risk factors pertinent to the Southern Appalachian study region, as well as measures of socioeconomic sensitivity. The team created a fire risk model that can aid partners at the US Forest Service Southern Research Station in planning for future fires in the region. Validation of the biophysical risk model with 2016 US fire perimeter polygons within this region suggests that the nine parameters and weights used in the model provide a reasonable framework. This term’s work produced an integrated wildfire vulnerability index that takes into account both the physical risk of wildfire and the sensitivity and adaptive capacity of the local population. The US Forest Service, as well as many other entities on the federal, state, and community levels, can use this end-product to assist with making science-based decisions about wildfire mitigation for the Southern Appalachians and recovery efforts for affected communities.
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[bookmark: _Toc334198737]7. Glossary
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) – an imaging instrument onboard Terra; ASTER data are used to create detailed maps of land surface temperature, reflectance, and elevation
Bivariate – involving or depending on two variables
Community Wildfire Protection Plan (CWPP) – addresses the wildfire risk of a community
Dasymetric – technique used to accurately assign and distribute data to selected boundaries
Digital Elevation Model (DEM) – 3D raster representation of a terrain’s surface
Earth Observing System (EOS) – coordinated series of polar-orbiting and low inclination satellites for long-term global observations
Google Earth Engine (GEE) – cloud based catalog of geospatial datasets
Heirs’ Property – property with multiple owners whose names are not explicitly noted on property deeds
Landsat 8 – launched on February 11, 2013, images the entire Earth every 16 days in an 8-day offset from Landsat 7 and acquires moderate resolution, multispectral images of the globe
MODerate resolution Imaging Spectroradiometer (MODIS) – ideal for tracking large-scale changes with its high temporal resolution and 36 discrete spectral bands
National Elevation Data (NED) – high precision bare earth elevation
Normalized Difference Burn Index (NBRI) – fire severity assessment
Normalized Difference of Moisture Index (NDMI) – an indicator of vegetation moisture
Normalized Difference of Vegetation Index (NDVI) – an index of plant “greenness” or photosynthetic activity, and is one of the most commonly used vegetation indices
Operational Land Imager (OLI) – one of two instruments onboard Landsat 8; collects image data for nine visible shortwave bands; measures the visible, near infrared, and short wave infrared portions of the spectrum
Sentinel-2 – Launched on June 23, 2015 by the European Space Agency, the Sentinel-2 satellite’s mission is mainly to provide information for agricultural and forestry practices. It expands on the French Spot and US Landsat missions.
Social Vulnerability Index (SVI) – external stress on a community
Thermal Infrared Sensor (TIRS) – measurement of land surface temperatures
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9. Appendices
Table B1. Fire Risk Model Matrix
	Parameter 
	Score
	Possible Reclassification Scheme (0-1000)
	Weight%  
(Priority) 
	Purpose

	Moisture (NDMI)
	0-200 high, 200-400 med, 400-800 low
	
	low
	Moisture content.  Score based on Keetch-Byram Drought Index

	Vegetation Greenness (NDVI)
	Low, med, high
	Neg values = 0
0.2-0.5 = medium
0.6-0.9 = high
0.1-0.2 = low
	high
	Ecological conditions

	Vegetation Type MODIS (Thrive/Decline)
	Deciduous vs. evergreen
	
	high
	

	Land Cover Type 2011 (NLCD)
	Plants that are high, med, low fuel load produced, and n/a
	
	high
	National land cover type 2011.

	Impervious Surface (NLCD)
	2 classes, impervious or non-impervious
Urban disturbance
	0, 1000
	high
	Areas with non-impervious surface are more likely to be at risk for forest fires.

	Canopy Cover
(NLCD)
	Below %, Above %, none, 0-1
	
	med
	% of canopy cover of tree density measurements.

	Terra ASTER
Slope/Aspect
	High >45%, med 15-45%, low <15%
	

	higher
	DEM from Terra ASTER

	National Elevation Dataset (NED) Slope/Aspect
	Slope:
0-10=0
10-25=1
25-35=2
35+=3
Aspect
N,NE,E=1
NW,SE=2
W,SW,S=3
	
	Slope=H
Aspect=L
	DEM from NED



Table B2. Ancillary Data
	Dataset
	Source

	Land Cover 2011
	National Land Cover Dataset

	Tree Canopy
	National Land Cover Dataset

	Impervious Surfaces 
	National Land Cover Dataset

	2016 Fire Perimeters
	US Forest Service

	Community Wildfire Protection Plan (CWPP) Locations
	DOI/USDA

	Firewise Communities Locations

	National Fire Protection Association

	American Community Survey 2011–2015 Five Year Estimates (ACS)
	US Census Bureau 

	Computer-Assisted Mass Appraisal (CAMA) Data 
	Georgia Department of Assessments and Taxation 







Table B3. Summary of Data Processing Steps for Each Dataset
	Dataset
	Processing
	Data Format

	Landsat 8 OLI
	·    Reprojected to UTM 17N
·    Formed composites from bands 1-7
·    Mosaicked scenes
·    Clipped to study area
·    Calculated NDVI
·    Calculated NDMI
·    Reclassified Rasters
	Landsat 8 NDVI and NDMI raster datasets for study area

	Sentinel-2
	·    Reprojected to UTM 17N
·    Formed composites from bands 1-7
·    Mosaicked scenes
·    Clipped to study area
·    Calculated NDVI
·    Calculated NDMI
·    Calculated NBRI
·    Reclassified Rasters
	Landsat 8 NDVI and NDMI raster datasets for study area

	ForWarn Phenological Data - Evergreen and Deciduous Decline
	·    Reprojected to UTM 17N
·    Merged GA, TN, NC datasets
·    Clipped to study area
·    Resampled from 250m to 30m resolution
·    Reclassified Rasters
	MODIS raster dataset for study area

	NLCD 2001 and 2011
	·    Reprojected to UTM 17N
·    Clipped to study area
·    Added ID field classes
·    Reclassified Rasters
	Land cover raster dataset for study area

	ASTER DEM
	·    Reprojected to UTM 17N
·    Mosaicked scenes
·    Clipped to study area
·    ArcToolbox 3D Analyst “Aspect” and “Slope” tools
·    Reclassified Rasters
	DEM dataset for study area

	NED DEM
	·    Reprojected to UTM 17N
·    Mosaicked scenes
·    Clipped to study area
·    ArcToolbox 3D Analyst “Aspect” and “Slope” tools
·    Reclassified Rasters
	DEM dataset for Rabun County





Table B4 2016 Pre-Fire Model Weights
	Rank
	Pre-Fire Model 1
	Weights

	1
	Slope
	0.182

	2
	NDVI
	0.182

	3
	Evergreen Decline
	0.182

	4
	Impervious Surface
	0.091

	5
	Deciduous Decline
	0.091

	6
	NLCD
	0.091

	7
	NDMI
	0.091

	8
	Canopy
	0.0455

	9
	Aspect
	0.0445

	
	
	1
















Table B5 Social Vulnerability Index Parameters
	Parameters

	Median Age

	Percent Population under 5 years old

	Percent Population over 65 years old

	Percent African American

	Percent Hispanic or Latino

	Percent Asian 

	Percent of Population over 25 without High School Diploma

	Per Capita Income (in dollars)

	Median House Value (in dollars)

	Percent of Population Below Poverty Line

	Percent of Housing Units Unoccupied 

	Percent of Housing Units that are Mobile Homes

	Percent Renter-Occupied Housing Units

	Median Rent for Renter-Occupied Housing Units (in dollars)

	Percent Female

	Percent Female Headed Households

	Percent of Housing Units with no Car

	Percent Unemployed Civilian Labor Force

	Percent of Households that Speak English as a Second Language with Limited Proficiency
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