

National Aeronautics and Space Administration

SANTA CLARITA VALLEY ECOLOGICAL CONSERVATION

Identifying Oak Woodland Infested with the Goldspotted Oak Borer in the Santa Clarita Valley Using Earth Observations

Madison Elowitt Simon Ng Justine Pendergraft Nathalie Lai

Meet the Team

Background – Goldspotted Oak Borer

The invasive Goldspotted Oak Borer (GSOB) presents a major threat to Southern California's native oak woodlands.

Agrilus auroguttatus

GSOB larvae feed on water and nutrients in an oak's cambium. Infestations can lead to visible damage within 2 – 3 years and eventual widespread mortality.

Image Credit (L–R): Mike Lewis, Center for Invasive Species Research, Mark Gunn

Coast live oak, Quercus agrifolia

Community Concerns – GSOB in SoCal

As a keystone species in SoCal, oak trees provide:

Macro-ecosystem Structure

Shade and Habitat

Food

Basemap credits: Earthstar Geographics

Partner Concerns

Resource Conservation District of Santa Monica Mountains (RCDSMM)

 Detect and treat migration early

Project Objectives

Identify infested trees and mitigate GSOB spread throughout Santa Clarita Valley

Anticipate and prevent future migration to the Santa Monica Mountains

Infested Oak Tree Classification Map

Risk Assessment Map

Landcover Change Map

Study Area and Period

Basemap Credits: AVIRIS-3, Esri, CGIAR, USGS, NASA, NGA, FEMA, TomTom, Garmin, FAO, NOAA, EPA, USFWS

Earth Observations – Sensors

Copernicus, ESA

Earth Observations – Time Period

Methods – Classification Overview

Methods – Ground Truth Data Processing

Raw Tree Points

Methods – Ground Truth Data Processing

Data

Wrangling

Raw

- Healthy Crown
- Healthy Crown with Beetle Holes
- Minor Dieback
- Minor Dieback with Beetle Holes
- Moderate Dieback
- Moderate Dieback with Beetle Holes
- Severe Dieback
- Severe Dieback with Beetle Holes

Analysis-Ready

- Healthy/Minor Dieback
- Healthy/Minor Dieback with Beetle Holes
- Moderate/Severe Dieback
- Moderate/Severe Dieback with Beetle Holes

Basemap Credits: MAXAR

Results – Oak Tree Classification

UAV Credits: CSUN CGST September 2024

Results – Oak Tree Classification Accuracy

Classifier	Accuracy	Kappa	AUC	Cross Validation Accuracy
K-Nearest Neighbor (1 Neighbor)	96.3%	0.92	0.95	96%
K-Nearest Neighbor (5 Neighbors)	97.2%	0.92	0.97	96%
Random Forest	100%	0.92	0.97	100%
Support Vector Machine	100%	1	1	100%

Methods – Infested Oak Tree Classification

Results – Infested Oak Tree Classification

Results – Infested Oak Tree Classification

Results – Infested Oak Tree Classification

		Testing	
		Infested	Not Infested
ning	Infested	73	26
Trai	Not Infested	16	65

Overall Accuracy: 76.67%

Methods – Risk Assessment

Potential Human Environmental Natural Population Movement of Stressors Spread Infested Wood Campsites Past Wildfires Known Firewood J. GSOB Vendors Infestation Heat (High Ŋ Temperatures) Residential Buildings

Methods – Risk Assessment Inputs

Results – Risk Assessment

Results – Risk Assessment

Methods – Landcover Change

Results – Landcover Change

10-m Sentinel-2 MSI-based NDVI does not provide enough sensitivity to track oak woodland decline as a result of GSOB infestations.

Classification	Mean Slope	% Significant Pixels
Healthy	0.003352	17.3%
Infested	0.003355	19.7%

Difference in mean slopes: not statistically significant (p=0.93)

Sources of Error and Uncertainty

Infested Oak Tree Classification

- Ground survey constraints
- No recent LiDAR data

Risk Assessment

- No geographic variability in infested tree points
- Weightings of inputs are not empirically determined

Landcover Change

- Coarse spatial resolution
- Multispectral imagery

Image Credit: Anita Gould

Conclusions

Demonstrate feasibility Work of utilizing NASA Earth observations to:

- detect infested oaks
- assess areas at risk

Illustrate limitations of landcover change analyses

Visualize full extent of Capabilities GSOB infestation in Santa Clarita Valley

Treat infested trees

Target GSOB

- mitigation and
- 6 prevention efforts in
 - vulnerable areas,
- artne especially in RCDSMM

Inform firewood users utreach of presence and threat of GSOB Empower them to 0 safely purchase and Public burn local firewood

Acknowledgments

Partners (End Users)

- Matthew Ribarich (Mountains Recreation and Conservation Authority)
- Rosi Dagit (Resource District of the Santa Monica Mountains)

Advisors

- Dr. Daniel Jensen (NASA Jet Propulsion Laboratory, California Institute of Technology)
- Dr. Latha Baskaran (NASA Jet Propulsion Laboratory, California Institute of Technology)
- Dr. Zoe Pierrat (NASA Jet Propulsion Laboratory, California Institute of Technology)
- Benjamin Holt (NASA Jet Propulsion Laboratory, California Institute of Technology)

Center Lead & Fellow

- Michael Pazmino (California JPL)
- Marisa Smedsrud (Maryland Goddard)

We also extend our gratitude to collaborators Julie Clark (University of California, Agriculture and Natural Resources), Kim Corella (CalFire), Danielle Bram and Hilary Johnson (California State University, Northridge), Dr. Alana Rader (Lewis & Clark College), and Beth Kyre (USDA, U.S. Forest Service, Southern California Shared Service Area).

This material contains modified Copernicus Sentinel data (2018-2024), processed by ESA.

This material is based upon work supported by NASA through contract 80LARC23FA024. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations.

Risk Assessment Components: Infestations

Distance to GSOB Infestations

Risk Assessment Components: Firewood

Risk Assessment Components: Firewood

Distance to Residential Buildings

Distance to Residential Buildings, Campsites, and Firewood Vendors Combined

Risk Assessment Components: Environmental

Results – Risk Assessment, Infestation x2

Results – Risk Assessment, Equal weights

Results – Risk Assessment, Firewood sources included individually

Results - Risk Assessment, Fire excluded

Results – Risk Assessment, Fire excluded v2

Results – Risk Assessment, Fire & Temp excluded

Results – Landcover Change

200 m