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1. Abstract 
In recent decades, the Rocky Mountains of northern Colorado and southern Wyoming have experienced 
extremely high levels of forest disturbance. Methodologies for mapping and labeling disturbance and classifying 
historical harvest events on the landscape level have not been readily available in the past. However, recent 
literature has paved the way for refined approaches, such as change detection software and predictive 
classification models. This project provided a more complete dataset for the National Park Service Rocky 
Mountain National Park (RMNP), the Colorado Forest Restoration Institute (CFRI), and the Bioenergy 
Alliance Network of the Rockies (BANR) Feedstock Supply Team. Landsat 4 and 5 Thematic Mapper (TM), 
Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) imagery 
were integrated into the LandTrendr algorithm to detect magnitude, duration, and extent of past forest 
disturbances. A suite of classification algorithms, including the Boosted Regression Trees (BRT) and the 
Random Forests (RF) classification models, were used to conduct analyses at the landscape level across a 
temporal scale of over 30 years. A labeled forest disturbance history was provided to project partners, which 
filled gaps in their past records and led to enhanced decision-making in the future. 
 
Keywords 
Timber Harvest, Landsat, Supervised Classification, Software for Assisted Habitat Modeling, LandTrendr, 
Remote Sensing 

2. Introduction 
2.1 Background Information 
The state of Colorado contains over 98,000 km2 of forest, comprised mostly of coniferous species, including 
ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), engelmann spruce (Picea emgelmannii), blue spruce 
(Picea pungens), Douglas-fir (Pseudotsuga menziesii), subalpine fir (Abies lasiocarpa), and white fir (Abies concolor) 
(Binkley and Duncan, 2009). In recent decades, the region has experienced an increase in forest disturbance, 
mandating a more adaptive approach to forest management techniques. Many of these disturbances stem from 
extreme weather events, changing climate, and ecological issues, while others are direct human actions, such as 
timber harvest (Shinneman et al., 2000). Forest composition has also rapidly changed in recent decades, as the 
standard growing stock of wood has expanded and environmental issues related to forest health have 
increasingly become a concern (Binkley and Duncan, 2009). 

 
Current monitoring of forest disturbances relies heavily on field data gathered by land managers during forest 
treatment events and an annual aerial forest health survey conducted by the Colorado State Forest Service 
(CSFS). The aerial survey data collection involves trained observers gathering information on land cover 
changes using small fixed-wing aircraft. These data are then mapped and classified to record location, intensity, 
and type of disturbance. The field data are incomplete for the study period of this project due to inconsistencies 
and inaccuracies of the data, which do not provide an accurate portrayal of disturbance history on a landscape 
scale (Ciesla, 2016). Additional difficulties with current methodologies include the expenditure of time and 
financial resources to complete the field work. 

 
The project’s study area covers 21,927 km2 of forests throughout northern Colorado and southern Wyoming 
with an elevation range of 1,478 to 4,351 m (Figure 1). The study period encompasses June 1983 to August 
2015. Public lands included in the area are State and National Forest lands as well as the National Park Service 
Rocky Mountain National Park (RMNP).  
 
2.2 Project Partners & Objectives 
The Rocky Mountain Agriculture team collaborated with a variety of project partners, including RMNP, the 
Colorado Forest Restoration Institute (CFRI), and the Bioenergy Alliance Network of the Rockies (BANR) 
Feedstock Supply Team. Partner interactions indicated that historical records of forest disturbances are 
incomplete, inconsistently collected, or non-existent. Rocky Mountain National Park’s involvement stemmed 
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from an interest in identifying a variety of disturbances within the park’s administrative boundaries. Our second 
partner, CFRI informs federal, state, and local entities on land management and fire reduction techniques. 
While their decision making process currently relies on field and historical data, they seek to better understand 
land cover change to restore healthy forest conditions at a landscape scale. Our third partner, BANR, works to 
quantify forest biomass to evaluate the possibility of using this live and dead biomass as a fuel source. 
 

 
To address partner needs, the Rocky Mountain Agriculture team modeled and characterized clearcut harvests 
at the landscape-scale over a 30-year Landsat time series, identified a variety of fine-scale forest disturbances 
within RMNP, and evaluated the feasibility of identifying forest thinning treatments at the landscape-scale.   

3. Methodology 
3.1 Data Acquisition  
Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper plus (ETM+), and Landsat 8 
Operational Land Imager (OLI) Level-1 imagery from 1983-2015 was acquired for Path 34, Row 32 from 
United States Geological Survey (USGS) EarthExplorer portal (Table 1). After identifying imagery with less 
than 50% cloud-cover that was captured between June and August, surface reflectance (SR) and cloud mask 
products as well as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR) 
indices were downloaded from the USGS Earth Resources Observation and Science (EROS) Center Science 
Processing Architecture (ESPA) interface using bulk ordering. 

 
Digital Elevation Model (DEM) data from the Shuttle Radar Topography Mission (SRTM) were acquired 
through the USGS EarthExplorer portal (Table 1). These topographic data were processed at a 30 m resolution 
to be consistent with Landsat imagery spatial resolution. 
 

Table 1: NASA Earth observations platforms, respective data products, spatial resolution, and number of images utilized 

Platforms & Sensors Products Number of Images 

Landsat 4 TM Surface Reflectance 13 

Landsat 5 TM Surface Reflectance 57 

Landsat 7 ETM+ Surface Reflectance 72 

Landsat 8 OLI Surface Reflectance 18 

SRTM Digital Elevation Model N/A 

Rocky 
Mountain 
National 

Park 

Study Area Boundary 

Rocky Mountain National Park 

National Forest Lands 

Figure 1: Rocky Mountain Agriculture study area map and inset map highlighting the National Park Service Rocky Mountain National Park 
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Ancillary data were collected from several different sources (See appendix A). Forest management data 
(vegetation and fuel treatments) were downloaded from Landscape Fire and Resource Management Planning 
Tools (LANDFIRE), an aggregate database from federal, state, and private environmental data sources 
(LANDFIRE, 2010). Other land disturbance records were acquired from the CSFS, RMNP, and BANR. 
Records of USDA Forest Service (USFS) roads were acquired from OpenStreetMap. Data regarding land 
management and ownership were obtained from the Bureau of Land Management (BLM) geospatial databases 
for Colorado and Wyoming. 

 
3.2 Data Processing 
LandsatLinkr (LLR), an automated system executed in RStudio, was utilized to preprocess the Landsat 4 and 5 
TM, Landsat 7 ETM+, and Landsat 8 OLI imagery (Braaten, 2015). LLR created cloud masked images, 
calibrated imagery from different sensors, and calculated Tasseled cap (tcap) indices. 
 
Preprocessed imagery was input into LandTrendr, an advanced environmental modeling algorithm that analyzes 
spectral changes in pixels across years and classifies the instances of greatest disturbances according to year, 
magnitude, and duration of disturbance (Figure 2) (Kennedy et al., 2010). 
 
For topographic indices, the DEM was utilized to calculate slope and aspect of the study area. Additionally, a 
Compound Topographic Index (CTI) was generated using Geomorphometric and Gradient Metrics Toolbox 
for ArcGIS (Evans, 2014). The projection utilized for all processing and analysis was World Geodetic System 
(WGS) 1984 Zone 13 N. 

 
Ancillary data containing forest management records were compiled from LANDFIRE, CSFS, RMNP, and 
BANR. Forest management data were visually inspected, and validation was conducted using Google Earth 
Pro imagery at varying spatial resolutions by overlaying forest management polygons.  
 
Accurately classified clearcut harvest polygons were buffered 30 m on the interior to ensure Landsat pixels 
represented an exclusively clearcut harvest area and served as an input for modeling land cover changes. A 
spatially-balanced sampling technique was utilized to generate training points from the buffered clearcut harvest 
polygons. Generated points were visually inspected against NAIP imagery to verify the points. A net total of 
1,650 training points indicating presence of clearcut harvest polygons were chosen as inputs for the 
classification models. 
 
3.3 Data Analysis 
Model runs were performed using the 
USGS Software for Assisted Habitat 
Modeling (SAHM) module package for 
VisTrails, an open-source provenance 
management and scientific workflow 
system (Morisette et al., 2013).  Modules 
in SAHM were divided into five main 
components: input data, preprocessing, 
preliminary model analysis, correlative 
models, and outputs. Training data were 
inputted as a comma separated file with 
x and y coordinates and a binary 
presence indicator of 1. A raster of our 
study area (with specified projection, 
spatial extent, and resolution) was used as the template layer. Model covariate inputs were magnitude of 
disturbance based on tcap wetness, duration of disturbance, pre-event vertex values (Figure 2), elevation, slope, 
aspect, CTI, and distance to roads. Model runs utilized five classification models: Random Forest (RF), 
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Figure 2: Spectral trajectory of a pixel within LandTrendr (adapted from Kennedy et al., 2010) 
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Multivariate Adaptive Regression Spline (MARS), Generalized Linear Model (GLM), Boosted Regression Trees 
(BRT), and Maximum Entropy (MaxEnt) classification models. 
 
Cross-validation and evaluation metrics for each model were compared to choose the best model for our study 
area. For cross-validation, the data set was divided into 10 equal folds and the models withheld a different 
subset for each run, thus minimizing spurious results due to a single random selection (Jarnevich et al., 2015). 
Performance metrics included Area Under Curve (AUC) and confusion matrix statistics. Multiple evaluations 
were used to assess model performance rather than relying on a single statistic to allow for a better overall 
model evaluation (Jarnevich et al., 2015). Additional statistics analyzed included Cohen’s Kappa, True Skill 
Statistic (TSS), sensitivity, specificity, and percent correctly classified. 
 
Final outputs were refined by filtering out disturbances that were less than 11 pixels in size due to disturbance 
patch size characterization found in similar research (Kennedy et al., 2010). Summary statistics were calculated 
from these refined outputs.  
 
To obtain Rocky Mountain National Park specific data, LandTrendr results were clipped to the park’s 
administrative boundaries. Disturbance patches were converted into polygons where the dominant disturbance 
year and average magnitude of disturbance were then calculated. 

4. Results & Discussion 
4.1 Analysis of Results 
Through visual analysis of the original harvest data, we confirmed that of the existing data 75.45% of the 
clearcut harvest data from LANDFIRE was accurate whereas 52.54% of the CSFS harvest data was accurate. 
 

 

Table 2: BRT model statistics for the training and cross-validation datasets 

Evaluation Statistic Training Dataset Cross-Validation Dataset 

AUC 0.998 0.982 

Cohen’s Kappa 0.933 0.861 

True-Skill Statistic 0.951 0.886 

Sensitivity 0.977 0.933 

Specificity 0.975 0.953 

Percent Correctly Classified 97.5 94.8 
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Figure 3: Response Operating Characteristic (ROC) curve for 
BRT model run 
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Each classification model within the SAHM analysis produced a corresponding binary output map, indicating 
the presence of clearcut harvests within the study area based on training points. These outputs indicated that 
the classification models performed reasonably well. Overall, the BRT model performed the best (Table 2). 
 
BRT’s AUC value for training and cross-validation dataset were between 0.9 and 1, which is considered highly 
accurate (Table 2) (Swets, 1988; Greiner et al., 2000). While the statistics for cross-validation are not as high as 
those for training, this is expected when partitioning the original dataset for training and testing the model. 
Since the sensitivity and specificity on the Receiver Operating Characteristic (ROC) curve are well above the 
diagonal line, the model fit is satisfactory (Figure 3) (Talbert and Talbert, 2001). 
 
The most important predictive covariates were found to be magnitude of disturbance (derived from changes 
in tcap wetness) and elevation (Figure 4). Although aspect, slope, and distance to roads were less important 
predictor variables, adding them to the model improved our results.  
 
4.2 Summary & Discussion 
Clearcut Harvest Summary 
In analyzing the clearcut harvest data (Figure 5), we observed that over half (55.8%) of all harvests have 
occurred since 2005. The last decade saw an average of 4.59 km2 harvest area per year, a 130% increase over 

Figure 5: Clearcut harvest map for the study area (left) with close-up views displaying harvests (right) 

Study Area Boundary 

Clearcut Harvest Polygons 
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the 1985-2004 average of 1.99 km2 of 
harvest per year (Figure 6). The close 
association of rising clearcut harvest 
activity and recent increases in biological 
disturbance events, i.e. mountain pine 
beetle outbreaks, over the same time 
period aligns with our project partner 
concerns to salvage the beetle-killed 
wood. 
 
Clearcut harvest data showed an 
elevation range between 2611 and 3126 
m, with the highest frequency of 
clearcut harvests at elevations from 
2750 to 2850 m. Lodgepole pine, which 
thrives in this elevation zone, has been 
clearcut harvested in response to the 
species being affected by the mountain 
pine beetle outbreak (Kauffman et. al., 
2008). Clearcut harvesting in this 
elevation range mimics the 
characteristics of a stand-replacing fire, 
which creates an ideal environment for 
lodgepole pine to regenerate (Lotan and 
Perry, 1983). 
 
The majority of clearcut harvests 
occurred at low-to-moderate slopes of 6 
to 10 degrees. Overall, clearcut 
harvesting is unlikely in areas of extreme 
elevation and slope due to forest species 
composition, tree line, and equipment 
constraints. We found that the median 
distance of harvests from roads was 

86.97 m (Appendix C). Overall, more than half of all harvests occurred less than 100 m from a road, 
underscoring the importance of road access. Many forest roads visible in satellite imagery were not present in 
the distance to roads dataset, which 
suggests that harvest polygons may 
often fall even closer to roads than 
our data suggests. Finally, 28% of the 
clearcut harvest events occurred on 
private land, with the remaining 72% 
on public lands. The majority of 
harvests (56.65%) were found on 
USFS-managed lands (Figure 7).  

 
RMNP as a Case Study 
RMNP only contains a small fraction 
of our study area’s clearcut harvest 
model outputs (0.18 km2) (Figure 6). 
Harvesting was completed due to 
special circumstances such as 
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Figure 8: Sum total of disturbance area by year for Rocky Mountain National Park 
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campground development and helicopter landing areas. However, the park features a wide variety of other 
forest disturbances over the 30-year study period that total 133 km2 of the park’s 1075 km2 (Figure 8). These 
disturbances can be split into specific events throughout the park and can be visualized according to magnitude, 
year, and extent (Figure 9; Appendix B). The individual disturbance patches of highest magnitude occurred in 
2010, 2012, and 2013. These years appear to correspond with events such as the Cow Creek Fire (2010), the 
Fern Lake Fire (2012), and ongoing beetle epidemics (Ciesla et al., 2016). 

 
In RMNP, disturbance events ranged in elevation from 2344 to 4174 m, with the average elevation at 3051 m 
(Appendix D). However, compared to most clearcut harvest events, disturbances in RMNP exhibited a broad 
range of slope and aspect values. These variations indicated a wide variety of disturbance drivers, landscape 
variability, and park-specific forest management practices and goals. 

  
4.3 Errors, Uncertainties, and Understanding Data in Context 
The Landtrendr algorithm calculates deviations in the spectral signatures of pixels from each year on the basis 
of adjacent years’ values. In utilizing a study period of 1983-2015, the change detection for the first (1983) and 
last year (2015) is “more difficult to judge than deviations in all other years” (Kennedy, et al. 2010). To address 
this, the team dropped the first year of data from the refined model outputs and data summarizations, but chose 
to keep the last year as preliminary data. 
 
Uncertainty also originated from the type of training data points used within SAHM. Potential errors could 
have stemmed from presence points not representing all spectral, geographical, and environmental conditions 
within our study area. Utilizing pseudo-absence points instead of true-absence points may also have affected 
the accuracy of the outputs. Pseudo-absence points can be affected by geographic and/or environmental 
sampling bias if they do not mimic sampling bias in the presence data (Jarnevich et al., 2015). We used several 
images spread over a period of one to three months within a year, which may have produced false indications 
of disturbances in the outputs due to small phenological variations within a year being detected as change. 
 
One of the team’s objectives was to assess the feasibility of applying the clearcut harvest modeling methodology 
to forest thinning events. We found that it was not feasible to map thinning events in this area without 
authoritative datasets. The records obtained by the team were inconsistently labeled, lacked information about 

RMNP 

Low Magnitude 

Medium Magnitude 

High Magnitude 

1985 

2015 

RMNP 

Figure 9: Rocky Mountain National Park disturbances maps, indicating year of disturbance (left) and categorized magnitude of disturbance (right) 
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the prescription, and had unreliable boundaries. Additionally, thinning events were often treated as a single 
prescription, but the amount of overstory removed is typically heterogeneous within a treatment. Thinning 
events occur in varying magnitudes, and lower severity thinning events are not always discernible from aerial 
and/or satellite imagery. 
 
4.4 Future Work 
One natural expansion of this project would involve modeling other forested areas in the Rocky Mountains. 
This could help build a more complete picture of the disturbance history across the region and continue to aid 
forest and land managers. Additionally, the project’s methodology could be applied to historical disturbance 
events outside the context of those presented here. For example, attempts could be made to classify large-scale 
atmospheric phenomena, such as tornados, flood events, and hurricanes. These data could be of value to a 
variety of stakeholders including disaster forecasters, city planners, and the agricultural industry. Finally, 
ground-level validation of model outputs is highly recommended going forward. Additional data from field 
surveys, particularly in thinned areas, would continue to improve the confidence in disturbance classification 
types and overall model accuracy. 

5. Conclusions 
Our team successfully utilized LandTrendr outputs to model and characterize clearcut harvest in the Rocky 
Mountains of Colorado and Wyoming. More subtle disturbance types were identified and mapped within 
RMNP by comparing raw outputs, existing records, and visual interpretation. These products will inform state 
and federal land managers’ decision making processes by addressing crucial knowledge gaps over the last 30 
years. The team also effectively assessed the feasibility of identifying forest thinning events using remote sensing 
and concluded that a more authoritative dataset and further research is needed. 

6. Acknowledgments 
Dr. Paul Evangelista (Colorado State University Natural Resource Ecology Laboratory) 
Tony Vorster (Colorado State University Natural Resource Ecology Laboratory) 
Brian Woodward (Colorado State University Natural Resource Ecology Laboratory) 
Dr. Tony Cheng (Colorado Forest Restoration Institute) 
Michael Caggiano (Colorado Forest Restoration Institute) 
Hanem Abouelezz (National Park Service Rocky Mountain National Park) 
Ryan Anderson (Bioenergy Alliance Network of the Rockies, Feedstock Supply Team) 
Geoffrey Clark (National Park Service Rocky Mountain National Park) 
Dave Frey (National Park Service Rocky Mountain National Park) 
Dr. Catherine Jarnevich (United States Geological Survey Fort Collins Science Center) 
Justin Braaten (Oregon State University, Laboratory for Applications of Remote Sensing in Ecology) 
 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. 
 
This material is based upon work supported by NASA through contract NNL11AA00B and cooperative 
agreement NNX14AB60A. 

  



9 
 

7. References 
Binkley, D., & Duncan, S. L. (2009). The past and future of Colorado’s forests: connecting people and ecology. 

Ecology and Society, 14(2). 
 
Braaten, J. (2015). LandsatLinkr 0.1.4 User Guide.  
 
Ciesla, W. M. (2016). 2015 Report on the Health of Colorado’s Forests. Colorado State Forest Service. Retrieved from 

https://csfs.colostate.edu/media/sites/22/2016/02/ForestHealthReport-2015.pdf 
 
Evans JS, Oakleaf J, Cushman SA, Theobald D (2014). An ArcGIS Toolbox for Surface Gradient and 

Geomorphometric Modeling, version 2.0-0. Available: http://evansmurphy.wix.com/evansspatial 
Accessed: 2015 Dec 2nd. 

 
Greiner, M., Pfeiffer, D., & Smith, R. D. (2000). Principles and practical application of the receiver-operating 

characteristic analysis for diagnostic tests. Preventive Veterinary Medicine, 45(1), 23-41. 
 
Jarnevich, C. S., Stohlgren, T. J., Kumar, S., Morisette, J. T., & Holcombe, T. R. (2015). Caveats for correlative 

species distribution modeling. Ecological Informatics, 29, 6-15. 
 
Kaufmann, M. R., et. al. (2008). The status of our scientific understanding of lodgepole pine and mountain pine 

beetles-A focus on forest ecology and fire behavior. 
 
Kennedy, R. E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using 

yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sensing of 
Environment,114 (12), 2897-2910. 

 
LANDFIRE (2010). Existing Vegetation Type Layer, LANDFIRE 1.1.0, U.S. Department of the Interior, 

Geological Survey. Accessed June 10th, 2016. http://landfire.cr.usgs.gov/viewer/. 
 
Lotan, J. E., & Perry, D. A. (1983). Ecology and regeneration of lodgepole pine. Agriculture Handbook, (606). 
 
Morisette, J. T., et. al. (2013). VisTrails SAHM: visualization and workflow management for species habitat 

modeling. Ecography, 36(2), 129-135. 
 
Shinneman, D., McClellan, R., & Smith, R. (2000). The State of the Southern Rockies Ecoregion: A Report by the Southern 

Rockies Ecosystem Project. Golden, CO: Colorado Mountain Club Press. Retrieved from 
http://rockymountainwild.org/_site/wp-content/uploads/executive_summary.pdf 

 
Swets, J.A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. 
 
Talbert, C., Talbert, M. (2001). User documentation for the Software for Assisted Habitat Modelling (SAHM) 

package in VisTrails. Fort Collins, CO: US Geological Survey, Fort Collins Science Center. Retrieved 
from https://www.fort.usgs.gov/publication/23401  

 
USGS (2015). “Monitoring Trends in Burn Severity.” Monitoring Trends in Burn Severity (MTBS). Last modified 

April, 2015. Accessed February 1, 2016. http://www.mtbs.gov. 

  

https://csfs.colostate.edu/media/sites/22/2016/02/ForestHealthReport-2015.pdf
http://evansmurphy.wix.com/evansspatial
http://landfire.cr.usgs.gov/viewer/
http://rockymountainwild.org/_site/wp-content/uploads/executive_summary.pdf
https://www.fort.usgs.gov/publication/23401
http://www.mtbs.gov/


10 
 

8. Content Innovation 
Content Innovation #1 
Glossary Viewer 

 Area Under Curve (AUC) – a statistic obtained from Receiver Operating Characteristic (ROC) curve 
that is utilized for model evaluation and comparison 

 Classification models 

 Boosted Regression Trees (BRT) – a model that repeatedly partitions data into two categories 

 Generalized Linear Model (GLM) – a model that employs a standard methodology 

 Maximum Entropy (MaxEnt) – a model that generalizes regression to multiple classes 

 Multivariate Adaptive Regression Spline (MARS) – a model that utilizes a non-parametric 
regression technique 

 Random Forest (RF) – a model that creates decision trees to delineate classes 

 Cohen’s Kappa – a statistic to measure the performance of models generating presence-absence 
predictions 

 Confusion Matrix – a table that contains information about actual and predicted classifications 
conducted through a binary classification system 

 Digital Elevation Model (DEM) – a visual representation of elevation data acquired through the Shuttle 
Radar Topography Mission (SRTM) and National Elevation Data (NED) 

 Disturbance Event – a land cover change resulting from a variety of anthropogenic or natural causes   

 Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project – an online 
aggregate database of vegetation, fuel, and disturbance information from federal, state, and private 
environmental data sources 

 LandsatLinkr – an automated system that creates spectrally and spatially consistent imagery across 
sensors 

 LandTrendr – a program that identifies and characterizes changes in pixels’ spectral signatures to 
identify disturbances in land cover; program identifies the year of onset, magnitude, and duration of 
disturbance 

 Year of Onset – the year that the disturbance began 

 Magnitude – the percentage of land cover that was affected 

 Duration – the length of time that the disturbance occurred for 

 Receiver Operating Characteristic (ROC) Curve – a graphical plot between sensitivity and specificity 
that illustrates the performance of binary (presence and absence) classifier system 

 Sensitivity – a statistic that measures the proportion of positives (presences) correctly identified 

 Specificity – a statistic that measures the proportion of negatives (non-presences) correctly identified 

 Tasseled-Cap (tcap) Transformation – the calculation of original Landsat imagery to product tcap 
brightness, tcap greenness, and tcap wetness bands 

 Threshold – a data specification that designates which values are included in each class 

 Topographic Indices – derivations from the DEM using the ArcGIS toolboxes as well as 
Geomorphometric and Gradient Metrics toolbox (Evans 2014) 

 Indices included aspect, Compound Topographic Index (CTI), and slope 

 True-Skill Statistic – an evaluation statistic that is utilizes sensitivity and specificity 

 USGS Software for Assisted Habitat Modeling (SAHM) – a package of modules that utilizes parameter 
data to simultaneously runs a suite of classification models 

Content Innovation #2 
Web Map of Clearcut Harvest History 

 https://geog568.carto.com/viz/5601f17a-5824-11e6-abae-0ef7f98ade21/public_map 

Content Innovation #3 
Featured Multimedia for this Article 

https://geog568.carto.com/viz/5601f17a-5824-11e6-abae-0ef7f98ade21/public_map
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 https://www.youtube.com/watch?v=-htgtUaxxxs 

 
Content Innovation #4 
Interactive Map Viewer: LLR-Time Machine (http://landsatlinkr.jdbcode.com/visualization.html) 

 https://drive.google.com/open?id=0B7sc20AcMLAYTlJhSklEMXk5Y1U 

 

 

  

https://www.youtube.com/watch?v=-htgtUaxxxs
https://drive.google.com/open?id=0B7sc20AcMLAYTlJhSklEMXk5Y1U
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IV. Appendices 
Appendix A – Tables 

 
Table A: Ancillary data types and their respective sources 

Data Type Specific Data Data Source 

Land Cover National Agricultural 
Imagery Program (NAIP) 

United States Department of Agriculture (USDA) 
Farm Service Agency 

Land Management 
and Ownership 

Colorado Land Ownership BLM, Colorado State Office 

Wyoming Land Ownership BLM, Wyoming State Office 

Administrative 
Boundaries 

Colorado State Boundary Colorado State University Natural Resource 
Ecology Laboratory (NREL) ColoradoView 

Maps of Roads Rocky Mountain National 
Park (RMNP) Boundary 

National Park Service (NPS) National Parks 
Dataset 

USDA Forest Service Roads OpenStreetMap 

Land Change and 
Disturbance Records 

Forest Disturbance Data USDA Farm Service Agency National Agricultural 
Imagery Program 

Harvest History Fire and Resource Management Planning Tools 
(LANDFIRE) Public Events Reference Database 

Fire Records National Park Service Rocky Mountain National 
Park (RMNP) Fire History Records 

Insect Outbreak Data USDA Forest Service Aerial Surveys 

Forestry Measurements Bioenergy Alliance Network of the Rockies 
(BANR) Feedstock Supply Team Field Data 
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Appendix B – Maps 
 

 

 

 
 
 
 
 
 
 

  

Appendix B: Inset map of disturbance years (left) and disturbance magnitude (right) within Rocky Mountain National Park with points 

corresponding to photos at the ground-level 
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Appendix C – Charts for the Study Area 
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Appendix C: Sum of annual harvest area in the study area, grouped by county and color coded by state 
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Appendix C: Count of clearcut harvest polygons at different ranges of elevation throughout the study area 
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Appendix C: Count of harvest polygons at different ranges of distance from the nearest road in the study area 
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Appendix D – Charts for Rocky Mountain National Park 
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Appendix D: Scatterplot should the area of each disturbance event in Rocky Mountain National Park and the 
year of disturbance, group by magnitude 
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Appendix D: Count of disturbance events at different ranges of distance from the nearest road in Rocky 
Mountain National Park 
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Appendix D: Sum of disturbance areas occurring at different elevations in Rocky Mountain National Park 
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Appendix D: Sum of disturbance areas occurring at different slopes in Rocky Mountain National Park 

6.0 

4.0 

2.0 

0.0 

 


