

National Aeronautics and Space Administration

Mark Twain National Forest Ecological Forecasting

Utilizing NASA Earth Observations to Classify Ground Cover Types in the Mark Twain National Forest

Kaitlyn Bretz, Madison Bradley, Sarah Hafer, Grant Verhulst

Idaho – Pocatello | Summer 2020

Road Map

Project Partners

- Mark Twain National Forest
 - History
 - Current restoration efforts
 - Community Concerns
 - Study Period
 - Study Objectives
 - Satellites & Sensors
- Methodology
- Results & Conclusions
- Errors & Uncertainties
- Future Work

Project Partners

USDA, US Forest Service Mark Twain National Forest (MTNF)

USDA, US Forest Service

Geospatial Technology and Applications Center

Mark Twain National Forest

▶ 1.5 million acres

- Diverse landscapes
 - Shortleaf pine-oak woodlands
 - Glades

Native species

- 750 native animal species
- 2000+ native plant species

Image Credits: US Forest Service; Nancy Feakes (USFS)

Mark Twain National Forest - Historical

- Logging & fire suppression
 late 1800s early 1900s
- Only 10% of historic pine-oak woodlands remain today

Image Credits: US Forest Service; W.R. Werner (USFS); Paul D. Kelleter (USFS)

Mark Twain National Forest

- 9 areas, 6 Ranger Districts
- Eleven Point & Poplar Bluff districts
 - Collaborative Forest Landscape Restoration Project (CFLRP, 2012)
- Ava district
 - Glade restoration

Community Concerns

Study Period

Image Credits: Jim Guldin (USFS); USDA-NRCS PLANTS Database

Objectives

Classify

 Create a land cover type analysis of MTNF that can be used to assist with species-level classifications

Forecast

 Forecast out to the year 2040 to determine changes in land cover type based on current management practices

Satellite and Sensors

Image Credits: NASA

Methods

Methodology: Image Processing

National Elevation Data

- Mosaicked DEM
- Calculated slope/aspect

Google Earth Engine

Filtered Landsat images
Applied cloud/snow masks
Calculated derivatives

Clipped & exported

ArcGIS Pro

- Mosaicked composite images
- Resampled to DEM's resolution (10m)
- Extracted all layers by mask to unify extents and number of columns/rows

 Greyscale Digital Elevation Model

 False-Color Slope-Aspect Model

Real-Color Landsat 5 Imagery, Winter 2001

False-Color NDVI, Winter 2001

Methodology: Image Processing

Calculated Derivatives

- NDVI
- NDWI
- ► EVI
- Important for Classification
 - Seasonal
 - Differentiates vegetation
 - Isolates waterbodies

Methodology: Supervised Classification

ArcPro Supervised Classification

Methodology: Species Modeling

ArcPro Forest-Based Classification & Regression

classification

2019 supervised classification

Land Cover Change, 1986-2019

10 miles 10 kilometers

> Land Cover Change 1986-2019 in Cassville Ranger District

Forecasted Land Cover Change, 2019-2040

Conifer to Deciduous
Meadow to Deciduous
Deciduous to Conifer
Meadow to Conifer
Deciduous to Meadow
Conifer to Meadow

Land Cover Forecast 2019-2040 in Cassville Ranger District

Eleven Point Ranger District:

1986 Land Cover Classification

Eleven Point Ranger District:

2019 Land Cover Classification

Eleven Point Ranger District:

2040 Land Cover Forecast

Ava Ranger District:

1986 Land Cover Classification

Ava Ranger District:

2019 Land Cover Classification

Ava Ranger District:

2040 Land Cover Forecast

Species Modeling

In-Situ data:

Shortleaf Pine & Eastern Red Cedar ground-truthed data

Shortleaf Pine Species Modeling

Not present, training

Not present, modeling

Pine present, training

Pine present, modeling

Eastern Red Cedar Species Modeling

- C
 - Not present, training
- С

Cedar present, training

Not present, modeling

Cedar present, modeling

10 kilometers

Between 1986 and 2019

- Loss of conifer forest and meadow/grasslands
- Increase in hardwood deciduous
- Greatest class conversion was from conifer/grassland to deciduous
- Increase in water cover (2019 record floods)
- > 2040 Forecast
 - Current management practices could promote conifer forest and meadow/grassland revival
- More data is needed for stronger prediction models, especially species-level statistics

Errors and Uncertainties

Training & validation data

- In-situ data not usable for species distribution
- Water and developed land cover training points impacted by snow mask

Landsat

- Coarse spatial resolution hides detail
- Large study area means we dealt with different swaths
- Low image quality made years ineligible

Future Work

- Incorporate high-resolution aerial imagery into classification (NAIP, DOQ)
- Expand number of classes to be identified
- Incorporate disturbances into forecasting model

Image Credits: US Forest Service; Nancy Feakes (USFS); Jeff Hamm

ACKNOWLEDGEMENTS

DEVEL@P

Science Advisor

Keith Weber

Idaho State University

Project Partners

Kyle Steele

USFS Mark Twain National Forest

Kevin Godsey

USFS Mark Twain National Forest

Nicholas Klein-Baer

USFS Geospatial Technology and Applications Center

DEVELOP Fellow

Mason Bull

Pocatello, Idaho Node

This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations.