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1. Abstract 

The Missouri River Basin provides irrigation water for a substantial part of the domestic agricultural sector 
within the United States. Drought events pose a significant threat to economic livelihoods of dependent 
individuals, industries, and ecosystems (e.g., farmers, local tribes, hydroelectric power, wildlife). In 2017 alone, 
the Missouri River Basin experienced a severe drought that resulted in a $2.6 billion loss to the U.S. Northern 
Plains. In response to such events, organizations throughout the basin, such as the Montana Climate Office, 
have dedicated efforts for drought monitoring and communicating relevant information to local stakeholders. 
In an effort to aid regional decision-making capabilities, the project team partnered with the Montana Climate 
Office, NOAA National Weather Service (NWS) Missouri Basin River Forecast Center, and NOAA Regional 
Climate Services, Central Region to create a monthly Composite Moisture Index (CMI) that relies on NASA 
Earth observations from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and the Soil 
Moisture Active Passive (SMAP) mission. From these satellites, as well as the NOAA NWS National 
Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS), our team 
aggregated climate datasets including soil moisture, snow cover, snow depth, and snow water equivalent to 
compute a CMI that indicates regional moisture conditions during the winter months. The March CMI values 
produced over the Missouri River headwater subbasin strongly correlate (r = 0.75) with spring and early 
summer stream discharge, demonstrating the use of this metric to indicate moisture conditions for the 
snowmelt and growing seasons. 
 
Key Terms 
drought, composite moisture index, SMAP, MODIS, SNODAS, SWE, snow depth 

2. Introduction 

2.1 Background Information 
The Missouri River Basin is the hydrologic region that encompasses drainage within all of Nebraska and parts 
of Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, North Dakota, South Dakota, and Wyoming. A 
major global breadbasket, the Missouri River Basin comprises agricultural areas that constitute approximately 
46% of wheat, 22% of grain corn, and 34% of cattle produced domestically within the United States (Mehta 
et al., 2012). This watershed is highly prone to drought events that impact both resource availability and 
economic productivity within the region. For instance, in 2017, a severe drought affected the Missouri River 
Basin, degrading pasture conditions to poor while resulting in a $2.6 billion loss to the U.S. Northern Plains 
(NOAA NCEI, 2020). To better prepare for such events, Montana, North Dakota, and South Dakota 
activated state drought task forces to assess drought conditions, review drought impacts, and facilitate 
drought relief (Jencso et al., 2019).  

The recent proliferation of publicly available satellite data with high spatial, spectral, and temporal resolutions 
bolsters drought monitoring capacities at both global and regional scales. Previous studies have utilized these 
remotely sensed datasets to construct a Composite Drought Index (CDI), for various areas around the world. 
In this report, we will refer to our construct as a Composite Moisture Index (CMI) as we account for a range 
of moisture conditions that encompasses both drought and flooding conditions. Such composite indices are 
powerful tools for effective drought monitoring as they assimilate data from multiple indicators representing 
meteorological, hydrological, and agricultural drought into a single numerical value that holistically assesses 
moisture conditions for a region of interest (Waseem et al., 2015). For example, Bijaber et al. (2018) used 
parameters derived from monthly satellite data at a national scale to create a CDI for Morocco. Their 
weighted composite indicator incorporated remotely sensed precipitation data, land surface temperature as a 
proxy for soil moisture, Normalized Difference Vegetation Index anomalies from Terra Moderate Resolution 
Imaging Spectroradiometer (MODIS) for quantifying plant stress, and evapotranspiration anomalies from 
surface energy balance modeling. 

Commented [A1]: Background, Study Area/ Period can all 
be within Background Information.  
 
There is no need to create multiple sub-section headings 
within 2.1 for each bolded category. This goes for 2.2 as well. 
It is ok, but not necessary, to create sub-sections if each has 
at least a paragraph of text. A paragraph should consist of 
at least 3 sentences. 
 

Commented [A2]: Include at least 5 references from peer-
reviewed literature and a study area map. Please cite all 
sources in-text using APA format.  

Commented [CAL(D3]: Does this mean that these terms 
can be used interchangeably? For clarity in your paper, make 
sure to be intentional about what terms you use. Are 
‘composite drought indices” (previous paragraph) the same as 
a “Composite Drought Index (CDI)”?  

Commented [EO4]: I think we should only mention one, and 
keep CMI to create less confusion 
 

Commented [DB5R4]: i agree with you its definitely 
confusing. the problem here is that the paper we cite, Bijaber 
et al. 2018, refer to theirs as a Composite Drought Index 
(CDI). so if we want to include their study here as an example 
we have to refer to it by its name. 

Commented [EO6]: I think we should only mention one, and 
keep CMI to create less confusion 
 

Commented [DB7R6]: i agree with you its definitely 
confusing. the problem here is that the paper we cite, Bijaber 
et al. 2018, refer to theirs as a Composite Drought Index 
(CDI). so if we want to include their study here as an example 
we have to refer to it by its name. 

Commented [EO8]: I feel that a line like this is necessary to 
address Amanda's comment. Could be re-written more posh*  



   
 

2 

 

The NASA DEVELOP team conducted a feasibility study to construct a monthly CMI for the Missouri 
River Basin (Figure 1) from January 2004 to August 2020 by incorporating soil moisture, snow depth, snow 
water equivalent, and snow cover measurements derived from NASA Earth observations and ancillary 
datasets. Specifically, the team explored the relationship between CMI outputs from December-March and 
annual cumulative runoff since winter soil moisture serves as antecedent conditions for potential flood and 
drought events in the oncoming spring and summer months. 
 

  
Figure 1. Map of study area spanning the Missouri River Basin 

2.2 Project Partners & Objectives 
To execute this project, the team collaborated with the Montana Climate Office, the National Oceanic and 
Atmospheric Administration (NOAA) National Weather Service (NWS) Missouri Basin River Forecast 
Center, and the NOAA Regional Climate Services - Central Region. Each of these project partners works 
towards providing precise, quality, and timely information about the hydrological and climate conditions in 
the Missouri River Basin (Montana Climate Office, 2020; Central Region | National Center for 
Environmental Information, 2020). The Montana Climate Office hosts an Upper Missouri River Basin 
(UMRB) Drought Indicators Dashboard that provides information about daily, monthly, and yearly 
conditions of the region including temperature, precipitation, soil moisture, vegetation, and drought metrics. 
In light of recent severe drought events, the partners were interested in a product that quantitatively explored 
antecedent moisture conditions that influenced agricultural drought or anomalous runoff to better inform 
drought management decisions. To this end, the team built the framework for a CMI based on NASA Earth 
observations that provides a holistic understanding of the moisture conditions of the Missouri River Basin. 
The Montana Climate Office and the NOAA NWS Missouri Basin River Forecast Center were the primary 
decision makers in the process of creating the CMI. They provided their scientific expertise and hydrological 
knowledge to guide the team’s integration of region-specific climate variables into the index in addition to 
selecting sub-watersheds for correlation analyses. In the future, the Montana Climate Office will use the CMI 
as a public-facing tool that provides a timely and holistic understanding of moisture conditions for their users. 
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3. Methodology 

3.1 Data Acquisition 
Our team utilized NASA Earth observations to retrieve snow cover and soil moisture data while drawing 
upon ancillary modeled snowpack data for explanatory variables as inputs of our CMI product. All datasets 
were acquired at different levels of processing and aggregated to monthly means from either daily or other 
sub-monthly time frequency simultaneously with acquisition. Figure A1 demonstrates these datasets and their 
respective spatial resolutions.  
 
The team acquired Level 3 500m gridded snow cover data from the Terra MODIS platform through a script 
that utilizes the Google Earth Engine (GEE) Python API. This Python script was run in a Jupyter Notebook 
which required the user to modify parameters specifying the month and year of interest. The snow cover 
image collection was filtered based on the desired time window and subsequently clipped to a shapefile of the 
Missouri River Basin (Hydrologic Unit Code [HUC] 2, Region 10), which was accessed from the National 
Resources Conservation Service (NRCS) Watershed Boundary Dataset. Lastly, the GEE reducer mean 
function was applied to the data to get monthly average snow cover. Similarly, surface soil moisture anomalies 
(SSMA) were acquired using a download link created from the GEE Python API from the NASA-USDA 
(United States Department of Agriculture) Soil Moisture Active Passive (SMAP) Global Soil Moisture Data 
product hosted in the GEE Catalog. A download URL was created for the desired raster image which was 
downloaded as a zipped archive and subsequently unzipped in an R script using the ‘httr’ package (v1.4.2; 
Hadley Wickham 2020). Already preprocessed as climatological anomalies, the SSMA data were accessed, 
clipped to the study area, and input into the GEE reducer mean function to derive monthly rasters for the 
available period of record. The team acquired modeled estimates of snowpack, snow water equivalent (SWE) 
and snow depth, from the NOAA National Weather Service's National Operational Hydrologic Remote 
Sensing Center (NOHRSC) Snow Data Assimilation System (SNODAS) as these data were not available in 
the GEE Catalog. Daily data for these sets at 1km spatial resolution for the continental United States were 
downloaded from the NOAA FTP server via an R script that utilized the ‘httr’ package for downloading 
zipped data (v1.4.2; Hadley Wickham 2020). Table 1 and Table 2 detail the specifications of each of the 
acquired datasets.  
 
Table 1  
NASA Earth observation data reference information 

Platform and 
Sensor 

Data Product Digital Object 

Identifier 

Period of Record Acquisition 
Method 

Terra MODIS MODIS/Terra 
Snow Cover Daily 
L3 Global 500m 
SIN Grid, Version 
6 

10.5067/MODIS/
MOD10A1.006 

 

February 24, 2000 
- Present 

Google Earth 
Engine Python 
API 

SMAP SMAP L3 
Radiometer Global 
Daily 27 km 
EASE-Grid Soil 
Moisture, Version 
4 

10.5067/ZX7YX2
Y2LHEB 

April 01, 2015 – 
Present 

Google Earth 
Engine Python 
API 

 
 
Table 2  
Ancillary data reference information 

Source Data Product Digital Object 

Identifier 

Period of Record  Acquisition 
Method 
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SNODAS Snow Data 
Assimilation 
System 
(SNODAS) Data 
Products at 
NSIDC, Version 1 

10.7265/N5TB14TC 

 
September 28, 
2003 - Present 

NOAA FTP 

Server 

 
3.2 Data Processing 
Given that the acquired data products differed from one another in their units of measurement, each was 
converted into a common, relative unit in order to create a composite index. For the three snow datasets, the 
team performed calculations on the monthly averaged data (outlined below in section 3.2.1) to determine the 
degree to which each pixel value deviated from climate normals. For soil moisture anomalies, the team 
calculated monthly averages across the period of record simultaneously with data acquisition. Following these 
processing steps, the methodology (detailed in Figure 2) enabled the integration of each dataset into a 
composite index despite their varying native units and disparate periods of record. 

 
Figure 2. Data processing graphical workflow prior to calculating CMI. 

 
3.2.1 Snow Data Percentile Generation 
Drought or flood events stem from exceptional moisture states that deviate from the long-term average 
conditions of an area. To detect how observations deviate from historic conditions, one must establish 
climate normals: the average climatological conditions for a weather variable for a given time frame. Monthly 
deviations from climate normals were calculated utilizing R 4.0.3 (R Core Team 2020) through RStudio 
1.3.1093 (R Core Team 2020). Our team used the ‘stats’ package (v3.6.2; R Core Team 2019) to compute an 
empirical cumulative distribution function (ECDF) for a given month across each snow cover historical 
dataset. The ECDF constructs a step function of average monthly values for each month on record for each 
pixel (Equation 1). 

𝐹𝑛(𝑡) = {𝑥𝑖 ≤ 𝑡}/𝑛 =
1

𝑛
∑ 1[𝑥𝑖≤𝑡]
𝑛
𝑖=1                               (1)  

The empirical cumulative distribution function is a step function that intakes a set of observed measurements 
xi, where i represents an indexed element of that set, and n represents the total number of observations in that 
set (ie: the available historical data [months on record] for a given pixel). F represents the distribution of all t 
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output values. Each t value presents the fraction of values less than or equal to x that exists over the entire set 
n.  
 
In order to determine the degree to which a monthly observation deviated from climate normals, our team 
used the ECDF to compute percentile values for each of the three snow datasets. With support from our 
science advisor, the team developed a custom function as an input to the calc function from the R ‘raster’ 
package (v3.3-13, Robert Hijmans 2020) so as to generate an ECDF cell-wise across a raster surface for a 
given month while subsequently assigning the corresponding percentile value to each pixel. Next, the team 
reassigned all pixel percentile values into one of five bins based on linear breaks that quantified a given 
monthly observation’s deviation from historic climate data (Table 3). The team pursued calculating 
percentiles as a measure of deviation based on the availability of data. Through discussions with advisors and 
partners, the team found that the 16-20 years of record for the snow datasets would give confidence in 
calculating a representative median (50th percentile) value but less confidence in identifying extreme values 
above or below the 90th or 10th percentile values. To classify all datasets into a common unit, the team 
generalized values above or below the median into a binning scheme to represent general values of above, 
below or near normal and to account for a lack of confidence in precisely identifying the 90th or 10th 
percentile values based on the years of record. This methodology was determined with input from the team’s 
science advisor and project partners after an exploration of histograms for each data product across time and 
space revealed that no single distribution fit all of the data. Thus, for feasibility purposes, the team proceeded 
with a linear model of classification. 
 
Table 3 
Binning scheme of percentile values for snow data 

Bin Bin Description Percentile Values 

-2 Far below normal 0-20% 

-1 Below normal 21-40% 

0 Normal 41-60% 

1 Above normal 61-80% 

2 Far above normal 81-100% 

 
3.2.2 SMAP Reclassification 
The SMAP surface soil moisture anomaly data product obtained from GEE contained values calculated using 
a 31-day moving window analysis. Thus, these data were originally calculated in a manner that increased the 
number of data points available across the five-year period of record, thereby strengthening the historical 
basis of the monthly averages calculated by the team. In order to integrate the SSMA product with snow 
cover data, the team devised a classification scheme that categorized monthly average anomalies into bins 
based on below normal, normal, and above normal values (Table 4). Our team studied histograms of SMAP 
over time to understand what range of values accurately captured the distribution of data. The normal bin 
was defined after identifying that the bulk of observations lay within the range of –0.5 to 0.5 (Figure 3). For 
the current SMAP data on record the minimum mean anomaly value fell just below -2 and the maximum 
mean anomaly value equaled 2.4. Considering this, negative and positive infinity were set as the lower and 
upper bounds of the “below normal” and “above normal” categories, respectively.  

Table 4 
Binning SMAP anomalies 

Bin Bin Description Percentile Values 

-1 Below normal - ∞ – -0.6 

0 Normal -0.5 – 0.5 
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1 Above normal 0.6 – + ∞ 

 

 

 

Figure 3. Histograms of January SMAP monthly mean anomaly values. 

3.2.3 Spatial Aggregation & CMI Calculation 
Two approaches were taken to spatially aggregate the disparate native resolutions of the four datatsets for 
compositing. Firstly, each binned data product was resampled to the coarsest resolution, that being SMAP at 
27km, using the nearest neighbor assignment method via the ‘raster’ package (v3.3-13; R Core Team 2020). 
The second approach involved spatially aggregating input datasets at their native resolutions to the HUC-6 
level in order to compute CMI values for sub-watersheds within the Missouri River Basin. To do so, the team 
extracted the mean pixel value for each HUC-6 polygon using the extract function in the ‘raster’ package 
(v3.3-13; R Core Team 2020). Following the spatial aggregation, the team calculated a CMI in two ways: by 
summing and by averaging each of the input climate variables. Therefore, the team produced two pixel-based 
CMI maps at 27km resolution, one computed as a sum of the indicators and another computed by averaging 
the indicators. Additionally, the team produced two HUC-6 level CMIs, one with CMI values computed as a 
sum of the indicators for each hydrological unit, and another computed by averaging the indicators for each 
subbasin. In our final CMI calculations, the team multiplied the binned SMAP data by 2 prior to summing or 
averaging. This was done to ensure that the scale of our CMI would have the same minimum and maximum 
range for both the period of record prior to and after the availability of SMAP data.  

3.3 Correlation Analysis 
To assess the explanatory power of our CMI, the team performed a correlation analysis for HUC-6 level CMI 
outputs with in situ cumulative streamflow data. We utilized the ‘waterData’ package (v1.0.8; Karen R. Ryberg 
and Aldo V. Vecchia 2017) to acquire annual cumulative streamflow from April through August across the 
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study period for the following five USGS stream gaging stations of interest: station 6102050 on the Marias 
River, station 6329500 on the Yellowstone River, station 06478513 on the James River, station 06174500 on 
the Milk River, and station 6054500 on the Missouri River Headwater (Figure B1). In this way, we were able 
to explore the relationship between antecedent moisture conditions with stream runoff in the spring and 
summer months directly following wintertime. Based on expert input from project parners, the team selected 
stream gaging stations for our correlation analysis that drained the contents of a respective HUC-6 region 
within the Missouri River Basin. In the selection process, the team prioritized gaging stations that did not 
include dams nor other physical features which could otherwise influence the cumulative stream flow data. 
 
We then looked at the correlation between the cumulative stream gage discharge for April through July and 
the December, January, February, and March CMI values for the selected regions. Each chosen gaging station 
was located in a river at the drainage point of a watershed contained in a single respective HUC, except for 
station 6329500 on the Yellowstone River which drained a total of five HUC-6 regions. The team averaged 
the CMI values for each respective HUC representing the aforementioned stream gaging stations in order to 
compute cumulative discharge correlations. Using the lm (linear model) function in the ‘stats’ package (v3.6.2; 
R Core Team 2019), our team fitted spring/summer cumulative discharge with winter CMI values using a 
simple linear regression. In this manner, we determined the coefficient of determination (R2) for a winter 
month’s CMI values and spring/summer cumulative discharge across the period of record January 2004 - 
March 2020 for which there was sufficient data to compute CMI values. Additionally, we computed the 
Pearson correlation coefficient (r) to measure the proportion of variation that was explained by our linear 
model for winter CMI and annual cumulative stream discharge. The resulting graphs likewise illustrated how 
correlations changed depending on specific CMI values for different winter months. 

4. Results & Discussion 

4.1 Analysis of CMI results 
A comparison of the pixel-based, summed CMI to the HUC-based, summed CMI revealed similar results. 
For March 2016, the CMI output indicated negative values in the northern part of the Missouri River Basin, 
values approximating normal conditions for the lower-middle part of the basin and positive values in the 
southwestern most part of the basin, a phenomenon shared by both the pixel-based and HUC-based versions 
alike (Figure 4). This result corroborates a dryness trend throughout the region as indicated by below-median 
runoff values for 2016 on the annual cumulative runoff graph above Sioux City, IA, the drainage point for the 
upper Missouri River Basin (U.S. Army Corps of Engineers, 2019, p. 41). In comparison, 2019 was an 
anomalously wet year for the region, maintaining the second highest runoff value in million-acre feet since 
record-keeping began in 1897 at Sioux City (U.S. Army Corps of Engineers, 2019, p. 37). Our CMI values for 
March 2019 were predominantly positive in our pixel-based results, with a few negative values output for 
peripheral areas of the basin (Figure 5). Our HUC-based CMI output for March 2019 displayed similar 
results, in which every single HUC maintained CMI values greater than 0, thereby indicating comprehensively 
wetter moisture conditions across the basin (Figure 5). Thus, both the pixel-based and HUC-based CMI 
results for March 2019 corroborate the observed wetness trend throughout the region illustrated in the annual 
runoff graph (U.S. Army Corps of Engineers, 2019, p. 41). A comparison of our pixel-based with our HUC-
based CMI results revealed that both methods depict similar moisture conditions for the region despite the 
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fact that the respective calculations were performed at different spatial scales.

 
Figure 4. Left: Pixel-based CMI for March 2016 at a 27 km resolution.  

Right: HUC-based CMI for March 2016 with a single CMI value produced for each hydrological unit. 
Hydrological units are denoted with gray borders. In each map, negative CMI values indicate areas with less 

moisture and positive CMI values indicate areas with more moisture. 

 
Figure 5. Left: Pixel-based CMI for March 2019 at a 27 km resolution.  

Right: HUC-based CMI for March 2019 with a single CMI value produced for each hydrological unit. 
Hydrological units are denoted with gray borders. In each map, negative CMI values indicate areas with less 

moisture and positive CMI values indicate areas with more moisture. 
 
 
When analyzing the correlation between winter CMI and spring cumulative discharge for subbasins with the 
larger watershed, the team found that February and March consistently had larger coefficients of 
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determination than December and January. Figure B1 details a map for the five subbasins selected for 
correlation analysis in this study. The higher correlation values in March likely reflect that snow conditions 
closer to spring melt are the ultimate contributors to runoff. Therefore, early snow can provide predictive 
possibilities but the conditions right before melt reflect the most representative CMI values. This is 
ascertained because the coefficients of determination (R2) for March CMI vs spring cumulative discharge 
were .55, .58, .60, .24, and .56 for the Yellowstone, James, Marias, Milk, and Missouri headwaters, 
respectively, while coefficients of determination for December CMI vs spring cumulative discharge were .40, 
.08, .04, .11, and .07 for the same respective regions. The average coefficient of determination was .14 for 
December while it was .51 for March, a 72.5% increase. The Pearson Correlation Coefficients were 
consistently higher in February and March than December and January for each region (Table 5). These 
values indicate greater reliability of our CMI calculations closer to spring snowmelt.  
 
Table 5 
Pearson’s Correlation Coefficient for December, January, February, and March CMI vs spring cumulative discharge for each 
watershed system analyzed. 

Pearson’s 
Correlation 
Coefficient (r) 

Yellowstone Marias James Missouri Milk Average 

December .64 .21 .28 .27 .33 .35 

January .57 .12 .62 .24 .47 .40 

February .67 .56 .78 .50 .52 .61 

March .74 .78 .76 .75 .50 .71 

 
The team determined the lower 10th and upper 90th percentiles of spring cumulative discharge for each of 
the five subbasins to assess whether CMI values accurately capture extreme moisture states as indicated by 
anomalously high and low runoff (Figure 6). The team referred to CMI values that accurately described 
extreme discharge events as ‘hits,’ which were below zero for the lower 10th percentile of cumulative 
discharge data or above zero for the upper 90th percentile of cumulative discharge data. CMI values that did 
not accurately describe extreme discharge events were considered ‘misses,’ represented by values in the lower 
10th and upper 90th percentiles of cumulative discharge that did not satisfy either of the previously stated 
conditions. For the month of March across our five regions of analysis, the results indicated 17 ‘hits,’ 1 in 
miss,’ and 2 inconclusive (CMI=0). Other “hits” and “misses” for December, January, and February are 
visually denoted (Figures 6, B2 - B5).  
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Figure 6. Left: Cumulative spring/summer discharge (April-August) taken at gage station 06054500 at the 
outlet of the Missouri River Headwaters plotted against the CMI values for the Missouri River Headwater 
HUC-6 region for December (2004-2019), January, February, and March 2004-2020. Vertical dashed lines 

represent the 10th and 90th percentiles of cumulative spring discharge. Colored boxes indicate whether the 
CMI performs as expected based on anomalous observed runoff, where blue points represent ‘hits’, and red 

points indicate ‘misses’. Right: Pearson’s Correlation Coefficient (r) for each month’s CMI vs cumulative 
discharge plot.  

4.2 Future Work  
To expedite the communication process to end users, the CMI workflow should be further developed to 
enable automation. Currently, the framework our team developed requires researchers to manually acquire, 
process, and analyze datasets through a pipeline of individual scripts, each of which involves changing input 
temporal and indicator variables. An automated CMI workflow would be capable of programmatically 
ingesting data, computing the intermediary analysis, and outputting the final CMI map products, thereby 
decreasing processing times while increasing overall use value. While the team’s present data management 
scheme and analysis methods were sufficient for completing this feasibility study, restructuring scripts and 
data storage would be necessary to achieve a level of computational efficiency necessary for future 
automation.  

Additionally, the team suggests adding functionality that would allow users to select how the parameters are 
calculated (i.e., percentiles vs. standardized anomalies). It would also be worth investigating how a change in 
computing these relative measures impact the results of the correlation analysis. Similarly, a sensitivity analysis 
of how the input parameters is binned into categories and weighted in the CMI summation would help 
demonstrate which methods produce the strongest correspondence with spring and summer runoff. 
Conducting a principal components analysis of how additional climate variables and drought indicators 
contribute to runoff would help develop a dynamic weighting scheme tailored to specific subbasins and 
adjusted for time of year (e.g., early fall, late fall, early winter, etc.).  
Analysis comparing winter CMI values to spring cumulative discharge could be improved by identifying when 
exactly snowmelt is happening in the different watersheds. Cumulative spring discharge was generalized 
through spring and early summer months, which may not have captured the realistic snowmelt timeframe, 
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and was likely largely influenced by liquid precipitation noise. To accurately capture changes in cumulative 
discharge that is a result of winter snowmelt, future teams could conduct a time-lag analysis between CMI and 
runoff, or calculate changes in snow cover or SWE to identify periods when snow is melting.  
 
The February and March CMI values most accurately demonstrated an ability to capture spring discharge 
events, while December and January values lacked strong correlations with spring discharge. Given that three 
of the four input variables to the CMI involve snow conditions, our team’s current analysis framework is 
primarily useful for the few months preceding spring snowmelt. To expand the temporal use of our CMI 
index, we suggest that our partners or future DEVELOP teams incorporate additional seasonal drivers of 
drought and flooding to increase flexibility of the index to best account for variance in seasonal conditions. 
 

5. Conclusions  
The Montana Climate Office was interested in a product that could express a holistic understanding of 
moisture conditions of the Missouri River Basin. The conditions antecedent to spring were especially of 
interest as snowmelt runoff largely influences moisture states along with drought or flood events in the early 
growing season. With this in mind, we developed a Composite Moisture Index that incorporated three snow 
variables: snow cover, snow depth, and snow water equivalent, along with soil moisture to describe moisture 
storage states during winter months. In analyzing the explanatory power of our CMI with in situ stream gage 
data, we found that our CMI values for February and March were most highly correlated with spring 
cumulative discharge within a sample group of subbasins in the watershed. In this way, the CMI was able to 
provide information on winter conditions that contributed to spring moisture states, addressing the primary 
need expressed by the Montana Climate Office, and developing the foundation for a holistic CMI. The CMI 
will aid in analyzing and indicating seasonal moisture conditions that can inform drought and flood planning 
efforts. The CMI methodology that our team developed with the guidance of our partners will be adopted by 
the Montana Climate Office to serve as a base product for further development and integration into the 
Montana Climate Office’s live platform, providing an interface for members of the public to interact. 
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API – Application Programming Interface 
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CMI – Composite Moisture Index 

ECDF – Empirical Cumulative Distribution Function 

Earth Observations – Satellites and instruments that collect remotely-sensed information about the Earth’s 

physical, chemical, and biological systems over space and time 

FTP – File Transfer Protocol 

GEE – Google Earth Engine: a cloud-based geospatial processing platform 

MODIS – Moderate resolution Imaging Spectroradiometer 

NOAA – National Atmospheric and Oceanic Administration 

SMAP – Soil Moisture Active Passive 

SNODAS – Snow Data Assimilation System 

SWE – Snow Water Equivalent 
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9. Appendices 
 
Appendix A  

 

 
Figure A1. Maps of January 2017 monthly average values of (A) SNODAS Snow Water Equivalent, (B) 
SNODAS Snow Depth, (C) SMAP soil moisture anomalies, (D) MODIS NDSI snow cover. The black 
polygonal line indicates the extent of the Missouri River Basin (HUC2 Region 10). These maps demonstrate 
all four data sets acquired at their respective native resolutions over the Missouri River Basin. Terra Moderate 
Resolution Imaging Spectroradiometer (MODIS) provided snow cover data at a 500m resolution. The team 
acquired soil moisture anomalies from Soil Moisture Active Passive (SMAP) at approximately 27km 
resolution. Snowpack snow water equivalent (SWE) and snow depth, from the NOAA National Weather 
Service's National Operational Hydrologic Remote Sensing Center (NOHRSC) Snow Data Assimilation 
System (SNODAS) were acquired at a 1km resolution. 
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Appendix B 
 

 
Figure B1. Map detailing the five Missouri River Basin subregions and respective stream gages for which 
analysis was conducted.  
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Figure B2. Left: Cumulative spring discharge (April-August) taken at gage station 06174500 at the outlet of the 
Milk River HUC-6 Watershed plotted against the CMI values for the Milk River HUC-6 region for December 
(2004-2019), January, February, and March 2004-2020. Blue highlighted points represent points in the lower 
10th percentile of cumulative discharge data that correlate with CMI values below 0 or points in the upper 
90th percentile of cumulative discharge data that correlate with CMI values above zero. Red values represent 
points in the lower 10th and upper 90th percentiles of cumulative discharge that do not satisfy either of the 
previously stated conditions. Right: Pearson’s Correlation Coefficient(r) for each month’s CMI vs cumulative 
discharge plot.  

 
Figure B3. Left: Cumulative spring discharge (April-August) taken at gage station 06478513 at the outlet of the 
James River HUC-6 Watershed plotted against the CMI values for the James River HUC-6 region for 
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December (2004-2019), January, February, and March 2004-2020. Colored boxes indicate whether the CMI 
performs as expected based on anomalous observed runoff, where blue points represent ‘hits’, and red points 
indicate ‘misses’. Right: Pearson’s Correlation Coefficient(r) for each month’s CMI vs cumulative discharge 
plot. 

 
Figure B4. Left: Cumulative spring discharge (April-August) taken at gage station 06329500 at the outlet of the 
Yellowstone River Watershed plotted against the average CMI values for the five contributing HUC-6 regions 
for December (2004-2019), January, February, and March 2004-2020. Colored boxes indicate whether the 
CMI performs as expected based on anomalous observed runoff, where blue points represent ‘hits’, and red 
points indicate ‘misses’. Right: Pearson’s Correlation Coefficient(r) for each month’s CMI vs cumulative 
discharge plot. 
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Figure B5. Left: Cumulative spring discharge (April-August) taken at gage station 06102050 at the outlet of the 
James River HUC-6 Watershed plotted against the CMI values for the James River HUC-6 region for 
December (2004-2019), January, February, and March 2004-2020. Colored boxes indicate whether the CMI 
performs as expected based on anomalous observed runoff, where blue points represent ‘hits’, and red points 
indicate ‘misses’. Right: Pearson’s Correlation Coefficient(r) for each month’s CMI vs cumulative discharge 
plot. 
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