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1. Abstract
In 2019, the Great Plains experienced unprecedented catastrophic flooding. Large flood events are predicted to increase in frequency and severity, posing risks to communities in this region, particularly Tribal Nations. We used data from Sentinel-1 C-band Synthetic Aperture Radar (C-SAR), imagery from the Sentinel-2 MultiSpectral Instrument (MSI), and digital elevation models (DEMs) from the Shuttle Radar Topography Mission (SRTM) within Google Earth Engine to map historical floods in the region beginning in 2014 with particular attention to the Rosebud Sioux Reservation and the tribal lands of other Great Plains Tribal Water Alliance members. This historical mapping used C-SAR for a combined method approach with a Z-score algorithm in addition to an index for flooded short vegetation. We also developed a flood risk map by weighting different flood predictor variables according to flood risk literature. These variables included soil drainage from the Soil Survey Geographic Database (SSURGO); elevation, slope, and Topographic Wetness Index (TWI) derived from digital elevation models; precipitation from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS); land cover from the National Land Cover Database (NLDC); and Normalized Difference Vegetation Index (NDVI) derived from Landsat 8 Operational Land Imager (OLI). From the flood extent and risk maps, we identified widespread flooding in short vegetation (including cropland) and noted flood susceptibility in regions exhibiting high social vulnerability and low community resilience (FEMA indices). We created an ArcGIS Online StoryMap to share project background, results, and data. Additionally, we provided a written tutorial so partners may replicate the flood mapping for future flood events.
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2. Introduction

[bookmark: _Toc334198721]2.1 Background Information
In recent decades, the state of South Dakota and the broader Northern Great Plains region have experienced an increased frequency of intense rainstorms along with an overall increase in annual precipitation due to climate change (Neri et al., 2019). Climate change projections anticipate a continued increase in the number of intense precipitation events and subsequent flooding (Cian et al., 2018). In 2019, South Dakota experienced its wettest year on record and many living in the Missouri River Basin endured devasting flooding in March of that year. The flood resulted in $10.9 billion in damage, making it one of the most expensive inland floods in U.S. history (NOAA, 2020). The magnitude of this economic loss is not unusual as flood events rival earthquakes and hurricanes as the most expensive type of disaster (Chini et al., 2019). 

Tribal Nations in the Northern Great Plains region are especially vulnerable to costly damages associated with natural disasters due to socioeconomic and political marginalization (Cozzetto et al., 2013). Similarly, Indigenous Nations' vital relationship with natural resources poses additional challenges because many natural disasters are destructive towards plants, animals, and water resources essential to their livelihood and culture (USGCRP, 2018). Furthermore, strong connections to place are integral to many Tribal Nations, making evacuation strategies more complicated to pursue. To prioritize disaster management, Tribal communities of the Northern Great Plains are seeking to utilize remote sensing and satellite imagery to better prepare for floods in the future.
With recent advances in satellite technology, remote sensing has become an increasingly powerful tool for flood mapping and monitoring (Cian et al., 2018). Satellites often have extensive spatial and temporal coverage which permits flood mapping in regions where in-situ data is limited or unavailable (Clement, 2017). Earth Observation (EO) data in combination with other auxiliary data can be used to combine large quantities of spatial information over a region and subsequently allow for a combination of variables to identify flood susceptibility (Pourghasemi et al., 2020). In this project, we sought to use these data and tools for robust flood monitoring and mapping as well as expand the accessibility of these tools by providing tutorials for project end-users.

The project study region is situated within the Northern Great Plains ecoregion, which spans the Missouri River Basin and contains approximately a quarter of both U.S. cropland and pasture/rangelands. (USDA, 2018). In recent years, significant flooding and drought have impacted the Northern Great Plains, and continuing climate extremes are projected to adversely affect the region (USGCRP, 2018). Within the Missouri River Basin, we examine smaller watersheds spanning South Dakota, North Dakota, and Nebraska that encompass Rosebud Sioux tribal land and reservations of other Great Plains Tribal Water Alliance members (GPTWA; Figure 1). We consider historical flooding from 2014-2020, beginning with the launch of the Sentinel-1 constellation, and analyze current flood risk based on current predictor variables (e.g., precipitation patterns or snowmelt processes). End-users will be equipped with a tutorial to update the flood extent map when a new flood event occurs.
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Figure 1. Watersheds for the risk map in the study area.
2.2 Project Partners & Objectives
The end-users of this study are the Rosebud Sioux Tribe Water Resources Office and the GPTWA. The Water Resources Office is responsible for disaster management plans for environmental problems such as drought and floods on the Rosebud Sioux tribal land in south-central South Dakota. The Water Resources Office currently seeks capacity building opportunities in flood risk mapping, both in data acquisition and use of mapping software. The Rosebud Sioux Tribe, along with the Flandreau Santee Sioux Tribe, Oglala Sioux Tribe, and Standing Rock Sioux Tribe, are members of the GPTWA. This group provides public education, outreach, and research on water science and policy in the Missouri River Basin. The GPTWA also seeks to expand its use of geospatial data and tools through capacity building opportunities between NASA and their communities. The FEMA Region VIII Mitigation Division is also an end-user of this study, mainly interested in the methods we use to produce flood resources for the Rosebud Sioux Tribe and GPTWA members. They currently provide support to six states, including 29 Tribal Nations, and aid communities facing disaster. They may use our methods to inform how they map inundation in the future. The NASA Indigenous Peoples Initiative provides additional support as a collaborator. For this study, we utilized Google Earth Engine (GEE) to generate (1) a historical flood mapping tool with accompanying flood extent maps and (2) a flood risk map. We also provided a user tutorial on how to utilize, personalize, and update these maps to promote capacity building in remote sensing methods. 

[bookmark: _Toc334198726]3. Methodology

3.1 Data Acquisition 
3.1.1 Historical Flood Map
Sentinel-1 Synthetic Aperture Radar (SAR) satellites have a combined 6-day revisit time, and are able to collect imagery regardless of weather or time of day, and generate cost-free, publicly available imagery (DeVries et al., 2020; Cian et al., 2018). With these advantages, change detection analyses of SAR data (e.g., pre- and post-flood) have proven a robust and accessible method for mapping flood extent (Amitrano et al., 2018; Refice et al., 2014). The development of open-source, cloud-based computing programs such as GEE has furthered user accessibility of SAR data in both acquisition and analysis (DeVries et al., 2020). We evaluated historical flood extent with C-band SAR data collected by Sentinel-1 for flood events that occurred after the introduction of Sentinel-1 from 2014 to present. All data were collected from the GEE catalog. Both Interferometric Wide Swath (IW) and Strip Map (SM) imagery were used (Table 1). IW imagery was acquired at incidence angles between 31° and 46° and SM imagery was acquired at incidence angles between 20° and 47° (DeVries et al., 2020). To ensure we identified the complete extent of floods, we used a Normalized Difference Flood in short Vegetation Index (NDFVI) and an algorithm called “s1flood” that uses temporal SAR Z-scores. A Z-score is a measure of how many standard deviations away from the mean a measurement is. 

Table 1. Sentinel-1 C-SAR data used for flood maps
	Flood Mapping Method
	Acquisition Mode
	Transmit/Receive Polarization
	Orbit Direction

	NDFVI
	Interferometric Wide Swath (IW)
	VH
	Ascending

	Z-score Algorithm (s1flood)
	Interferometric Wide Swath (IW), Strip Map (SM)
	VH, VV
	Ascending



3.1.2 Flood Risk Map
To create the flood risk map, we utilized a variety of datasets to capture the range of factors affecting flooding in this region. Table 2 reflects the datasets and their use within our project. We also used FEMA’s National Risk Index to pair the identified flood susceptibility with vulnerability to contextualize the flood risk map. 

Table 2. Data used to evaluate flood susceptibility
	Platform
	Parameter
	Use

	Shuttle Radar Topography Mission
	DEM
	Used to identify study area topography and calculate slope and Topographic Wetness Index

	National Land Cover Dataset
	Land cover
	Used to identify types of land cover that face flood impacts, like croplands, or contribute to flooding, such as impervious surfaces; from 2016

	Climate Hazards Group InfraRed Precipitation with Station data
	Precipitation
	Used to estimate the average amount of precipitation over the study region; from 2018 to 2020

	Landsat 8 Operational Land Imager (OLI)
	Surface Reflectance
	Used to map Normalized Difference Vegetation Index (NDVI) as a proxy for plant root systems in preventing precipitation runoff; from 2018 to 2020

	USDA Soil Survey Geographic Database (SSURGO)
	Soil drainage
	Used to identify soil types and assess how the soil type affects water drainage.

	USGS National Hydrography Dataset
	Hydrography
	Used to identify watersheds for study region and river systems to help validate the risk map within the study area.



3.2 Data Processing
3.2.1 Normalized Difference Flood in short Vegetation Index
We used the NDFVI method described in Cian et al. (2018) to identify flooding in short vegetation. First, we used a posteriori knowledge to collect multi-temporal series data representing the time preceding the flood event to serve as a baseline for the analysis, and then collected data representative of the flood event. We converted SAR data from backscatter intensity (σint) to backscatter coefficient (σ0) measured in decibels (dB) (Equation 1). 

 						(1)

Once the data was converted to its natural form, we used NDFVI to highlight the discontinuity in the time-series caused by shallow water in short vegetation (Equation 2; Cian et al., 2018).

		         (2)

After the index was calculated, we identified a threshold to isolate the flooded areas. We used Equation 3 to calculate the threshold (Cian et al., 2018). We used a constant (k) in the threshold equation and selected a value of k = 1.5 based on the literature from Cian et al. (2018). The calculated threshold, mean NDFVI, and standard deviation of NDFVI were unique to each study area.  

                                   (3)

To increase the accuracy of the flood maps, we applied a smoothing filter to reduce speckle, the random noise that is inherent to SAR images. Additionally, we created a filter to exclude any pixels falling on a slope of > 5° where flooding is unlikely to occur (Cian et al., 2018). The slopes were calculated using DEMs from HydroSHEDS, a dataset obtained in 2000 by NASA's Shuttle Radar Topography Mission (SRTM).

3.2.2 Z-score Algorithm 
We evaluated flooding with s1flood, a GEE package created by DeVries et al. (2020). Similar to the data inputs for NDFVI, we collected multi-temporal series data representing a reference based on a priori knowledge for before the flood event and selected a date representative of the flood. Any water that appeared above ground surface or vegetation canopy compared to a historical reference was identified as flooding by this algorithm.

Within the s1flood package, the SAR data were converted from backscatter intensity to backscatter coefficient measured in decibels. Then, the mean and standard deviation backscatter coefficient was calculated for the data over the reference pre-flood period. The mean and standard deviation for the backscatter coefficients were calculated separately for each parameter (acquisition mode, polarization mode, and orbital direction) that was applied (Table 1). The backscatter anomaly (Δσ0; Equation 4) and Z-score (Z; Equation 5) were calculated for each observation acquired at time t under polarization mode p, sensor acquisition mode m, and orbital direction d.

                                                          (4)

                                                                 (5) 

Once the statistics are calculated, the s1flood package allows for post-processing to increase the accuracy of the flood maps. The results of the Z-score calculation are compared to expected intra-annual surface water regimes using the Landsat-based Monthly Water Historic dataset. The dataset was produced by the Joint Research Centre (JRC) of the European Commission and the Dynamic Surface Water Extent (DSWE) algorithm described by Jones (2015). We input desired historical open water and historical inundation probability thresholds of 90% and 25% respectively. These thresholds resulted in any pixel the algorithm classified as flooded to appear when the JRC or DSWE probability of permanent open water for that pixel was less than 90% and when DSWE historical inundation probability was greater than 25%. We selected the thresholds based on those used by the author of the s1flood package for flood mapping around Omaha, Nebraska, an area similar to our study region.

3.2.3 Flood Risk Map
To highlight flood susceptibility, we examined literature on flood risk mapping to determine which factors to use and how to assign relative value to these variables to account for their contribution to flood risk. Table 3 shows the weights we applied to our susceptibility variables based on an approach that used machine learning and the Boruta algorithm to consider flood variable importance (Pourghasemi et al., 2020). 

Table 3. Weights for flood susceptibility factors
	Factors
	Importance

	Altitude
	6.15

	Slope
	8.74

	Distance from rivers
	14.07

	Rainfall
	9.70

	Topographic Wetness Index
	20.97

	Land use
	33.23

	Soil
	2.99



To prepare our data for this weighting, we normalized the different factors to a range from 0 to 1. For categorical data, we re-mapped values based on contribution to flood risk from 0 to 1. For continuous datasets, we used the equation for normalization (Equation 6). To save computational time, we processed data only within the HUC10 watersheds that are contained within the reservations in the GPTWA. 

                                                                     (6)

In ArcGIS Pro, we used the DEM to calculate slope and Topographic Wetness Index (TWI). Areas of low slope are likely to be more susceptible to flooding, therefore we inverted the values after normalizing. The elevation values from the DEM were also normalized and inverted. After we calculated TWI, we normalized the data but did not invert the values, as a high TWI would indicate higher susceptibility to flooding. We calculated NDVI with Landsat 8 imagery from January 1, 2018 through December 31, 2020 in GEE using a median composite of cloud-masked imagery. These data were also normalized and inverted because a higher amount and density of vegetation would indicate less susceptibility to flooding given a stronger root structure and less propensity for extreme runoff. In GEE, we used CHIRPS to create rainfall summaries over the region for 2016, 2017, and 2018. These were averaged to indicate a typical precipitation amount over the region and normalized within ArcGIS Pro, with a higher amount of rainfall indicating higher susceptibility to flooding.  

[bookmark: _GoBack]To normalize the NLCD data in relation to flood susceptibility, we remapped wetlands and open water to 1; pasture, cropland, and barren land to 0.75; developed land cover at all intensities to 0.5; shrub and grassland to 0.25; and all forest types to 0. These values were assigned based on flood risk literature that indicated the types of landscapes more susceptible to flooding (Pourghasemi et al., 2020; Tehrany et al., 2019) We followed a similar methodology for soil drainage and assigned very poorly drained to 1 (high risk), poorly drained to 0.833, somewhat poorly drained to 0.667, moderately well drained to 0.5, well drained to 0.333, somewhat excessively drained to 0.167, and excessively drained to 0. 
Finally, because literature indicated distance to rivers as an important flood susceptibility factor, we also calculated this using flow accumulation rasters derived from the DEM and a flow distance tool in ArcGIS Pro. This index was also normalized and inverted, as land with a lower distance to a river would have a higher susceptibility to flooding. 

3.3 Data Analysis
3.3.1 Historical Flood Map and FLOAT 
The outputs from the NDFVI and Z-score algorithm were used in the FLood Observation and Analysis Tool (FLOAT) to assign a classification of high confidence, medium confidence, low confidence, flooded vegetation, or no flood (Figure 2) and combined into one layer. 

[image: ]
Figure 2. FLOAT categorizes each pixel within the study area using a dichotomous system to create a flood map.
To provide additional support that the flood mapping was working as intended, we compared the March 2019 flood maps that were outputs of the FLOAT to true color imagery from Sentinel-2. All imagery within the duration of the flood event (March 18 to April 7, 2019) had some amount of unavoidable cloud cover over our study site. We selected Sentinel-2 imagery from March 28, 2019 because it offered the most cloud-free imagery of the Rosebud Reservation and aligned with the peak intensity of the flood event based on USGS stream gage data. 
Once we generated the March 2019 flood map and selected the true color imagery, we drew a polygon that was bounded within the Rosebud Reservation and avoided clouds. Then, we generated 120 random points within the polygon for a stratified random sampling design. We generated 30 points each for “No Flooding”, “Low Confidence”, “Medium Confidence”, and “High Confidence” classifications and visually assessed if they were correctly or incorrectly mapped. The “Flooded Short Vegetation” class was not assessed because we could not visually determine if flooding within the vegetation was present based on Sentinel-2 imagery. “Permanent Open Water” was also not assessed because this classification is information from a preexisting dataset and does not change based on the Z-score algorithm or NDFVI. We used these assessment points to create a confusion matrix.
While we did not have access to any in-situ surveys, we had access to 25 points from a road condition map created by the Rosebud Sioux Tribe. These points represent evacuated areas, road flooding or washout, high waters, and caution of high water or no travel advised areas. The road condition map was created by community members to collect information on impassable roads on the reservation due to flooding (KNBN 2019). Ten of the 25 points had images of the flooding attached. We compared each image location to the flood classification map and indicated if the flood classification map had correctly identified flooding (Figure 3).
[image: ]
Figure 3. When possible, (A) FLOAT outputs were cross referenced with (B) Sentinel-2 MSI true color imagery (collected here during the flood event on March 28, 2019 in the Rosebud Reservation) and (C) validated with a ground truthed photo. (Credit: Rosebud Sioux Tribe, 2019)
3.3.2 Flood Risk Map
After normalizing each factor contributing to flood susceptibility, we applied the weights noted in Table 3. We also resampled factors that did not have a 30-meter resolution to a pixel scale of 30 to add the values together. To create more interpretable results, we divided the values into low, medium, and high flood susceptibility based on the distribution of values within the final dataset. To account for the vulnerability and resilience of communities to flood risk, we incorporated data from FEMA’s National Risk Index. The two variables used in our maps were social vulnerability and community resilience scores. These were overlayed on the flood susceptibility map to provide context.

[bookmark: _Toc334198730]4. Results & Discussion

4.1 Analysis of Results
[bookmark: _Toc334198734]4.1.1 Historical Flood Map and FLOAT 
Using FLOAT, we were able to identify areas of flooding for the March and September 2019 flood events. FLOAT is a flexible tool and allows the user to export the flood maps and further refine the pixel noise or view within the tool. We calculated the overall accuracy of FLOAT based on cross referencing Sentinel-2 imagery to be about 82% (Table 4). Unintuitively, the “Low Confidence” flooding was the most accurate based on our hierarchical random point sampling analysis with 97% of the 30 points in that class being accurately classified.

Table 4. Random points (30 per classification) were placed on the March 2019 flood map. These 120 points were on Rosebud Reservation land and cross referenced with Sentinel-2 imagery from March 28, 2019. The “Low Confidence” classification had the highest accuracy among tested points while the “Medium Confidence” classification had the lowest. 
[image: ]
The “Low Confidence” classification is titled to reflect it as the most uncertain map class because it was not mapped due to any change in signal from either the Sentinel-1 VV or VH backscatter polarization. “Low Confidence” is mapped due to the DSWE historical surface water regimes, which reflect historical patterns of inundation. We suspect this classification had the most accurate rate of success in the cross reference with Sentinel-2 imagery because the characteristics of the landscape largely dictate where inundation will occur.
The “Medium Confidence” classification was likely the least successful in the cross-reference assessment because it only maps flooding based on one change in signal from either the VV or VH backscatter polarization. Due to the nature of SAR, different polarizations will scatter due to a variety of causes. Although the presence of a water surface can cause backscattering, so will other types of surfaces. While one polarization may become scattered, a different polarization may not. For this reason, “Medium Confidence” may have been the least successful map classification in the cross-reference assessment.
Seven of the ten geotagged ground-truthed photographs were correctly mapped when checked against the March 2019 flood map. The three that were not accurately overlapping onto a flood classification were within 40 - 120 meters of a mapped flooded area. It is possible that the location that was geotagged by a smartphone had some accuracy errors or that the Z-score algorithm and NDFVI missed the flooding on the smooth surfaces of the roads, as all the ground-truthed photographs were in relation to road flooding. It is possible that the Z-score algorithm missed flooding that occurred on road because smooth roads can produce a similar backscatter to the smooth surfaces of still water. If backscatter produced by the road and water were similar, there would not be enough of a change in the backscatter signal to cause the flood to be mapped. Additionally, it is possible that the photographs were not taken during March 28, 2019, the date that was mapped by the Z-score algorithm.
To ensure that effective flood mapping is quick, accessible, and not dependent on prior user knowledge, we developed a graphical user interface (GUI) in GEE for the project end users. This widget, FLOAT (FLood Observation and Analysis Tool), allows the user to map historical floods by selecting the flood event and area of interest (Figure 4). To do this, users can either elect a pre-defined flood event (i.e., March 2019) or input a custom date. Similarly, users can also select a pre-defined area (i.e., Rosebud Sioux Reservation) to map floods or import or draw a new area of interest. Before adding the flood layers to the mapping panel, users can choose to incorporate the DSWE algorithm. As this algorithm considers prior flooding, it likely produces more accurate maps, but also carries the trade-off of longer computing times. Once all user parameters are defined, the flood layers can be added to the mapping panel in GEE for examination, or exported as a .tif file. By exporting, the user can join the flood map with other valuable information such as traditional knowledge or community-collected data. As a resource, we developed an accompanying tutorial that guides users in utilizing FLOAT. This tutorial provides information on how to troubleshoot potential problems that may arise while using the tool and can be referenced well beyond the project hand-off.

[image: ]
Figure 4. The GUI and mapping panel of the FLood Observation and Analysis Tool (FLOAT).

4.1.2 Flood Risk Map
The variables contributing to the flood susceptibility calculations showed various diverse patterns on the landscapes of the Pine Ridge, Rosebud, and Standing Rock Reservations (Figures 5, 6). Notably, the importance of the land cover layer is prominent in the resulting map, especially in the agriculture land in the center of the Rosebud Reservation as well as a large portion of the Standing Rock Reservation, which fall in the “medium” risk category. The Rosebud Sioux Tribe may also face additional challenges with higher levels of precipitation and a varying landscape over a small area paired with a high social vulnerability and low community resilience (Figures A17-A20). The variation seen in all the susceptibility factors across the landscapes studied highlight the challenges that an organization like the GPTWA may face when trying to mitigate flood risk and protect populations living within the reservations (Figures A1 – A16).

One important note to address with the different variable weighting is the standard normalization process that we used for each dataset, which may not be appropriate for every variable. For instance, a steep slope can significantly contribute to flooding; however, water would accumulate in areas with a shallow slope. Thus, we could improve accuracy by assigning high risk values to both extremely steep and extremely shallow slopes. This nuance was similarly simplified with the land cover data: like steep slopes, impervious surfaces will contribute to flooding, but flat and agricultural landscapes are more susceptible to collecting water. However, we assigned a medium risk weight to impervious surfaces. 

[image: ]
Figure 5. Flood susceptibility map for Pine Ridge and Rosebud Reservations

[image: ]
Figure 6. Flood susceptibility map for Standing Rock Reservation

[bookmark: _Toc334198735]4.2 Future Work
Future work should incorporate a more robust validation method for the historical flood mapping tool by comparing the flood maps to high resolution imagery taken during the flood event. Additionally, if the tool is used on future flood events, the tool’s accuracy can be increased by improving the user-defined thresholds for both the NDFVI and s1flood Z-score algorithm. Using higher resolution data and further refining the flood risk inputs and their associated influence weights would also improve the accuracy of the flood risk map. The flood risk map could also consider the influence of groundwater on flooding by including a depth to groundwater table layer. Another future input for the flood risk map could be infrastructure footprints to allow the project partners to identify specifically what buildings or roads may be most at risk.
Other future work could include creating webinars or other training material beyond the team-made tutorial to further build capacity with the end users. The training material should allow the project partners to be able to independently understand how to create, customize, and use historical flood extent maps and flood risk maps. This would enable end users to continually update flood risk maps with the most current information – especially as conditions evolve under a changing climate. Another future project may include creating a community-based tool to allow community members to participate in flood mapping by reporting exact locations of inundation. In turn, this may help validate and produce highly accurate flood maps. 

5. Conclusions
The Northern Great Plains region is expected to endure an increase in severity and frequency of rainstorms, along with an overall increase in annual precipitation, leading to a higher occurrence of flood events. Cooperative adaptation efforts can be difficult to pursue for climate disasters like flooding because they often cross local, county, and state borders. For this reason, adaptation efforts tend to focus on small scale change. Tribal nations in the region have historically lacked support, posing more severe challenges to Indigenous Peoples. The Rosebud Sioux Water Resources Office and GPTWA were mainly interested in promoting capacity-building of Tribal Leaders in remote sensing tools for climate disaster preparation and planning. Our project provides an example of remote sensing tools and products that can be used to supplement decision-making, specifically regarding where to focus flood mitigation techniques and resources. Additionally, the ArcGIS StoryMap takes an interactive and accessible approach to convey project information. The StoryMap is viewable by all community members and aims to facilitate awareness and interest in the capabilities of remote sensing.
[bookmark: _Toc334198736]FLOAT takes a novel approach that combines flood mapping for short vegetation and open water flooding. In conjunction with the tutorial, FLOAT allows partners to view and map the extent of flood events while building general capacity in GEE. We were able to use FLOAT to successfully map flooding across the entire study area. The static risk map provides partners with an immediate assessment of flood vulnerability and susceptibility, while also exemplifying how remote sensing tools can support environmental stewardship and climate disaster planning. Our end products emphasize the high levels of variance between land cover, slope, elevation, and other important flood risk factors throughout each reservation, which highlight the challenge of mitigating flood risk. While we see some flood risk follow topography, other areas are influenced by land cover, namely agriculture and barren land. Further ground truthing these flood risk maps may help increase the accuracy to better reflect the reality of flood risk. We were able to build capacity with our partners through providing them a custom GEE script and tutorial, flood risk data, and provided science communication material through a StoryMap.
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7. Glossary
AHP – Analytical Hierarchical Process, a method to determine the relative importance of factors
DEM – Digital Elevation Model, a representation of terrain 
DSWE – Dynamic Surface Water Extent, an algorithm that detects surface water extent from any cloud/shadow/snow-free pixel in the Landsat Archive within the United States 
EO – Earth Observations, satellites, and sensors that collect information about the Earth’s physical, chemical, and biological systems over space and time
FEMA – Federal Emergency Management Agency, a federal agency that assists in disaster response
FLOAT – FLood Observation and Analysis Tool, an end-user widget for mapping historical floods
GEE – Google Earth Engine, open-source cloud-computing software
GPTWA – Great Plains Tribal Water Alliance, an independent corporation that advises on technical and policy issues to assist the Tribal Nations of the Flandreau Santee Sioux Tribe, Oglala Sioux Tribe, Rosebud Sioux Tribe, and Standing Rock Sioux Tribe
GUI – Graphical User Interface, such as a widget or application
JRC – Joint Research Centre, a part of the European Commission that made a Landsat-based Monthly Water History dataset
NDFVI – Normalized Difference Flood in short Vegetation Index, for mapping shallow water in short vegetation
NDVI – Normalized Difference Vegetation Index, an assessment of how green vegetation is
SAR – Synthetic Aperture Radar, a remote sensing tool that can image Earth’s surface regardless of the time of day or weather conditions
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9. Appendices
[image: ]
Figure A1. Map of elevation, from Shuttle Radar Topography Mission DEM (2000), normalized and inverted over Pine Ridge and Rosebud.  
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Figure A2. Map of Distance to River, normalized and inverted over Pine Ridge and Rosebud
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Figure A3. Map of Normalized Difference Vegetation Index, calculated from Landsat 8 OLI imagery from January 2018- December 2020, inverted over Pine Ridge and Rosebud.
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Figure A4. Map of NLCD, re-classified and normalized to 100 over Pine Ridge and Rosebud
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Figure A5. Map of rainfall, normalized over Pine Ridge and Rosebud
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Figure A6. Map of slope, from Shuttle Radar Topography Mission DEM (2000), normalized over Pine Ridge and Rosebud
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Figure A7. Map of soil drainage, re-classified and normalized to 100 over Pine Ridge and Rosebud
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Figure A8. Map of Topographic Wetness Index, normalized over Pine Ridge and Rosebud
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Figure A9. Map of elevation, from Shuttle Radar Topography Mission DEM (2000), normalized and inverted over Standing Rock.
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Figure A10. Map of distance to river, normalized and inverted over Standing Rock.
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Figure A11. Map of Normalized Difference Vegetation Index, calculated from Landsat 8 OLI imagery from January 2018- December 2020, inverted over Standing Rock.
[image: ]
Figure A12. Map of NLCD, re-classified and normalized to 100 over Standing Rock.
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Figure A13. Map of yearly average precipitation, normalized over Standing Rock.
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Figure A14. Map of slope, from Shuttle Radar Topography Mission DEM (2000), normalized over Standing Rock.
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Figure A15. Map of soil drainage reclassified and normalized to 100 over Standing Rock.
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Figure A16. Map of Topographic Wetness Index, normalized over Standing Rock.
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Figure A17. Community resiliency state percentile per census tract, as calculated by FEMA’s National Risk Index
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Figure A18. Social vulnerability state percentile per census tract, as calculated by FEMA’s National Risk Index
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Figure A19. Community resiliency state percentile per census tract, as calculated by FEMA’s National Risk Index
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Figure A20. Social vulnerability state percentile per census tract, as calculated by FEMA’s National Risk Index
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