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1. Abstract
The magnitude and timing of forest disturbances have implications for global carbon cycles and forest ecosystem recovery. The carbon stored in central Idaho forests makes up a significant part of the overall carbon stocks in United States forests. Similar to the broader regional pattern of forest disturbance in the western United States, Nez Perce-Clearwater forests in central Idaho have been increasingly impacted by disturbances from insects, disease, fire, and clear-cutting activities in recent decades. This project estimated the distribution, timing, and drivers of dead biomass with an emphasis on tree mortality resulting from forest pests and disease. The team utilized NASA’s Landsat series alongside United States Forest Service Aerial Detection Survey data to determine forest disturbance and recovery trends. Forest disturbance data outputs from LandTrendr, LiDAR-derived aboveground total biomass maps, and forest inventory data were used in a Random Forest Classification model to estimate dead biomass. These results allowed the team to map dead biomass by year and cause, which will be used by partners at the Bioenergy Alliance Network of the Rockies as a primary input in future efforts to determine the economic and environmental feasibility of utilizing dead aboveground biomass for biofuel production.
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[bookmark: _30j0zll]2. Introduction
2.1 [bookmark: _1fob9te]Background Information
Forests play a significant role in the global carbon cycle by storing and releasing carbon, contributing to its flux between terrestrial ecosystems and the atmosphere (Houghton, 2005). One third of the carbon emissions caused by humans has already been absorbed by the world’s forests (Percy et al., 2003). Severe bark beetle outbreaks can transform forests from carbon sinks to carbon sources (Bright et al., 2014). In recent decades, forest disturbance has become more frequent and severe as changes in climate drive modifications in tree and stand susceptibility to agents such as bark beetle, fire, and root diseases (Masek et al., 2008). Quantifying the impacts of abiotic and biotic disturbance agents are a critical piece of monitoring carbon trends (Ryan et al, 2010).

The Nez Perce-Clearwater National Forests, located in north central Idaho, account for ~1.5% of the carbon stocks in the coterminous United States (US Forest Service, 2014). Natural disturbance agents such as mountain pine beetle (Dendroctonus ponderosae), western spruce budworm (Choristoneura occidentalis), and various root pathogens are significant drivers of disturbance and change in central Idaho forest conditions (Raffa et al, 2008; O’Laughlin, 1993). Mountain pine beetle generated the most disturbance by area of biological agents in central Idaho with its impact peaking in 2010 (Figure 1). A changing climate has lowered host tree defenses through drought stress resulting in high tree mortality during the past decades (Hicke et al., 2016). The large volume of dead aboveground biomass resulting from forest disturbance events presents the opportunity to extract this resource as biofuel feedstock. The prospect of using this beetle killed biomass as a biofuel feedstock presents a potentially effective technique for managing forests affected by large disturbance events.

Figure 1. Agents of forest disturbance categorized by hectares per year per agent, based on Region 1 and 4 US Forest Service aerial detection survey (ADS) data that falls within our study area.


Determining the feasibility of this approach requires identifying the location of beetle-killed wood and quantifying this standing dead biomass. Due to the often remote and rugged terrain that accompanies bark beetle disturbance events, remote sensing can provide a unique method for analyzing disturbance events at a regional scale. Landsat satellite data has been used extensively in ecological applications of remote sensing, largely due to its substantial record of freely available satellite imagery, relatively high spatial resolution, and its combination of spectral bands useful in vegetation and land cover studies (Cohen & Goward, 2004). Utilizing Landsat imagery allows the unique opportunity to compare vegetation status over an extended period of time to observe changing trends across multiple disturbance drivers (Cohen & Goward, 2004). Landsat-derived maps of dead aboveground biomass will help identify economic and environmental feasibility of biofuel extraction in bark beetle-affected forests. 

2.2 Project Partners & Objectives
The objectives of this project were to generate a current map of estimated dead aboveground biomass distribution in the study area using NASA Earth observations and ancillary datasets. Additionally, the team intended to develop a method to analyze forest disturbance and recovery trends in bark beetle-impacted forests using these datasets. The methods outlined in this study can be utilized by other projects to map dead aboveground biomass distributions and quantify the carbon stocks contained in the resource. The results of this study provide a first step to determine the feasibility of using this resource for biofuel feedstock. 

The project was carried out in partnership with the Bioenergy Alliance Network of the Rockies (BANR) Feedstock Supply Team and Natural Resource Ecology Laboratory (NREL) at Colorado State University. This project aids partners in their efforts to monitor carbon and determine the economic and environmental feasibility of using aboveground dead biomass as biofuel feedstock. This project addressed NASA’s Applied Sciences Program Energy Application Area by assisting in efforts to locate and utilize potential energy sources for the benefit of society using Earth observations and remote sensing methods.

2.3 Study Area and Period
This project focused on the forested areas of north central Idaho located in Landsat scene WRS-2 Path 42, Row 28 (Figure 2). The extent of the study area included the Nez Perce-Clearwater, Wallowa-Whitman, and Payette National Forests, as well as parcels of state forest, tribal, and private lands. Prolonged gentle rains, cloudiness, fog, high humidity, and deep snow accumulation at high elevations characterize winter and spring precipitation. The area experiences mild to moderate winters, which are partly responsible for the productive forests in north central Idaho (Cooper et al. 1991). 

The forests in this area span a range of elevations and species compositions (Appendix A), with fire-adapted Ponderosa pine (Pinus ponderosa) forest at lower elevations to increasingly fire susceptible species of fir at higher elevations (Cooper et al., 1991). Over the past 30 years, central Idaho forests have undergone significant changes in disturbance dynamics related to changing climate and fire regimes (Raffa et al., 2015; Cooper et al., 1991). This project used Landsat scenes from 1984 to 2016 to capture this disturbance history in the area. Imagery from July, August, and September were used for each year to ensure snow-free conditions. 42028

[bookmark: _3znysh7][image: ]Figure 2: Study area map showing the Landsat WRS-2 Path 42, Row 28 and the different land ownerships within the Landsat scene located in central Idaho.
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3. Methodology
3.1 Data Acquisition
[bookmark: _dvxwc3wcsacr]The team acquired Landsat imagery through the United States Geological Survey (USGS) ESPA Ordering Interface bulk downloader. Imagery acquired by the team included scenes from Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) sensors. Surface reflectance products were used due to their strength in land change studies, providing products with more consistent surface conditions than top of atmosphere values across sensors and over time (Townsend et al., 2012). A digital elevation model (DEM) derived from the Shuttle Radar Topography Mission (SRTM), version 3 provided topographic information. 
[bookmark: _2et92p0]
Ancillary datasets included partner in situ plot measurement data of standing dead biomass, LiDAR and Landsat-derived aboveground total biomass maps for the study area, aerial detection survey (ADS) data, and Monitoring Trends in Burn Severity (MTBS) fire history maps. Partners at NREL provided forest plot data sampled for the years 2002, 2007, 2008, 2009, 2010, and 2016, which contained information regarding plot locations and standing dead biomass for each plot, and the aboveground total biomass maps, which included live and dead standing biomass (Falkowski et al. 2017). The total biomass maps provided by NREL coincided with each plot year, except for plot year 2015. They were only available through 2011, so this data was used for plot year 2015. ADS data, a record of disturbance events in the area, were downloaded through the United States Forest Service (USFS) for the years between 2002-2015. ADS data for the study area came from USFS Regions 1 and 4. The team downloaded MTBS data, created and managed by USGS and USFS, through the MTBS website for the years between 2002-2014. 

3.2 Data Processing
The team utilized topographic data and disturbance trend rasters in addition to partner provided datasets as inputs for the Random Forests model. Rasters of topographic information from the SRTM Version 3 were processed in ArcMap to generate topographic information such as elevation, slope, aspect, northness, eastness, and Compound Topographic Index (CTI).

LandsatLinkr, an R package, was used to generate annual tasseled cap composites of Landsat scenes from 1984-2016. The LandsatLinkr package composites surface reflectance data across the time series to generate annual tasseled cap brightness (TCB), tasseled cap greenness (TCG), and tasseled cap wetness (TCW) composites (Braaten, 2015). Tasseled cap wetness was determined to be the most appropriate composite index for this project due to its ability to strongly predict forest disturbances from bark beetle (Senf et al. 2015). More broadly, TCW represents soil moisture and vegetation density and is a contrast between shortwave-infrared and visible/near-infrared reflectance (Crist et al., 1986). TCW is suitable for analysis of land cover and forest changes to estimate dead aboveground biomass (Senf et al., 2015), and was therefore the LandsatLinkr output used in this study.

Following the LandsatLinkr generation of tasseled cap composites, the TCW outputs were used as inputs in LandTrendr software to generate information regarding the magnitude, duration, and timing of disturbance. LandTrendr identifies and classifies changes in tasseled cap wetness at each pixel over the time series, providing outputs that label change into categories that describe disturbance trends (Kennedy et al., 2010).  The first step in LandTrendr is segmentation and fitting. This process analyzes change at each pixel to create a smoothed change curve at each segment where disturbance occurs over the time series (Figure 3; Kennedy et al., 2010). These outputs from the segmentation and fitting step become the inputs for the second step, filtering and labeling. This step categorizes the segments produced from step one into change classes defined by spectral curve trends that the model identifies as disturbance events, and generates data layers to describe the disturbance trends from these curves, including magnitude, duration, and disturbance to recovery ratio (Kennedy et al., 2010). Filtering identifies common patterns across spatially clustered pixels and assigns these pixels to the same disturbance trend (Kennedy et al., 2013). Labeling further classifies the change curve segments into categories such as greatest disturbance, most recent disturbance, and longest recovery based on parameters set by the user (Kennedy et al., 2010). These parameters give users the option to identify and analyze specific disturbances based on user-defined tolerances (Kennedy et al., 2013). The pixel tolerance, determines whether the filtering method is loose, tight, or unfiltered, defining the spatial proximity between similar pixels needed for them to be aggregated into patches if their change trajectories are the same (Kennedy et al., 2013). The team accepted default parameters for these categories, and generated all three filters for each change class.

To align LandTrendr data with plot data, which ranges from 2002 to 2015, the study period was broken into temporal subsets ranging from 1984 to 2004, 1984 to 2005, 1984 to 2006, and so on. This was done by running the segmentation step for the entire time series, and then filtering and labelling was run separately for each time step. 

             [image: GraphwBckgrd.PNG]Figure 3. Example spectral curve generated for a disturbance segment in LandTrendr. Magnitude, duration, and pre- and post- disturbance and recovery values are sorted in order to determine greatest and longest recoveries and disturbances. Year of onset for disturbance and recovery are assigned in the year following the start of each decline or increase in spectral values. (Kennedy et al., 2010)
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3.3 Data Analysis 
To prepare LandTrendr outputs for the random forests model, each LandTrendr raster output from the filtering and labeling process was extracted by the team’s study area mask polygon to only include the Idaho portion of the study area path row. Then, the values of each raster at each plot point, separated by year of sample, were extracted into the attribute table of the plot dataset. These attribute tables were exported and combined into Microsoft Excel, and organized to be used as a random forests data input. The output data from LandTrendr were then combined with total aboveground biomass maps and topographic information as predictor variables to model standing dead biomass from field plot data in a Random Forests model using R software. The standing dead biomass values from the in situ field plot data were transformed using a square-root transformation to address the abundance of zero values to reduce the skew across the large range of data values. This rescaled the range of dead aboveground biomass closer to zero. Additionally, the largest four plot outliers were removed as their values were significantly outside of the interquartile range of the dataset and weakened model performance (Appendix B). 

The team determined the combination of predictor variables with the strongest predictive performance using the VSURF R software package (Genuer et al., 2015). The VSURF package eliminates correlated and weak predictor variables (Genuer et al., 2015). The variables identified in VSURF were then run through Random Forests to verify and further test their strength at highlighting standing dead biomass at in situ field plots. The Random Forests model defines relationships between observed variables and outcomes across complex interactions, as is the case with forest disturbance, where many interacting processes contribute to tree mortality (Bright et al., 2014; Cutler et al., 2007). The team generated a standing dead biomass map by applying the final random forests model to the predictor variable rasters. The resulting distribution map was compared to ADS and MTBS maps to visually verify predicted dead biomass locations align with forest disturbance events. 
[bookmark: _1t3h5sf]4. Results & Discussion
4.1 Analysis of Results
Model outputs suggest that, in order of importance, elevation, total biomass, most recent disturbance pre-vertex value, northness, greatest disturbance magnitude, longest disturbance recovery segment duration, longest disturbance magnitude, compound topographic index, and greatest recovery magnitude most strongly predict standing dead biomass (Table 1). Weighting these variables accordingly and combining the rasters of these datasets generated a standing dead aboveground biomass model (Figure 4). These predictors explain 33.41% of the variance in the model, with a root mean squared error of 38% (Appendix C).  
Table 1. Importance score of predictor variables in estimating aboveground total dead biomass


	Predictor
	Importance Score

	Elevation
	40%

	Total Biomass
	15%

	Most Recent Disturbance Pre-Vertex Value (Unfiltered)
	15%

	Northness
	7.2%

	Greatest Disturbance Magnitude (Unfiltered)
	7.1%

	Longest Disturbance Recovery Segment Duration (Unfiltered)
	5.5%

	Longest Disturbance Magnitude (Unfiltered)
	3.6%

	Compound Topographic Index
	3.5%

	Greatest Recovery Magnitude (Unfiltered)
	3%



Consistent with the results of this project, previous research suggests topographic characteristics and total biomass, along with longest disturbance and greatest disturbance magnitudes are important predictors of dead aboveground biomass (Hudak et al., 2013; Pflugmacher et al., 2012). This list of strong estimators is unique compared to previous research in that it includes greatest recovery magnitude as one of the top predictors.

Visually the modeled standing dead biomass map aligns well with recorded disturbance from the ADS dataset in the study area. Forest disturbance events from ADS data were correctly depicted in the modeled output as areas of high levels of dead aboveground biomass (Appendix D). Areas of high modeled dead biomass that were not captured by ADS polygons did approximately match recent fire polygons from the MTBS dataset (Appendix E). In this preliminary model, agriculture was not highlighted in the results as having high dead aboveground biomass (Figure 5), further supporting that this project and method has strong potential in providing estimates of the mass and distribution of biomass in the next phases of analysis conducted by project partners. 
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Figure 4. Final modeled dead biomass map output from Random Forests model.


Figure 5. Agricultural area outlined in black (left) compared to modeled standing dead biomass in agricultural area (right).


[bookmark: _4d34og8]LandTrendr outputs included in this list were all unfiltered outputs, demonstrating that the fine-grained detail in these compared to the tight and loose filtered outputs were more important for capturing standing dead biomass at field in situ plot points. This is consistent with the pattern of bark beetle and disease outbreaks, which occur across stands as patchy disturbances, rather than as single clearly delineated areas of outbreak. 

4.3 Future Work
Project partners will use these results and the LandTrendr outputs generated in this project to improve upon and run a similar model using USFS Forest Inventory Analysis (FIA) plot data. These data are more numerous than the field data used in this project and are collected using a standardized protocol. 

While the focus of this project was mapping dead aboveground biomass for subsequent analysis of environmental and economic feasibility of extracting dead biomass for biofuel feedstock, this project also provided important baseline analysis to assess forest health and changes in carbon cycles over time and the ability to predict these dynamics into the future. In having a reliable method of analyzing forest disturbance trends and estimating dead biomass, partners can continue analysis of biofuel feedstock availability and carbon accounting. With the dead aboveground biomass map from this project, BANR will have the ability to analyze location, quantity, and accessibility of dead biomass feedstock supply in central Idaho. Additionally, partners can continue to use the methodology employed in this project to understand how forest disturbance events and the prospect of harvesting dead biomass for a biofuel feedstock has on the carbon cycle. 

The results of the Nez Perce-Clearwater Energy project offer the potential to further explore and predict forest dynamics in the study area and other forested areas, and predicted changes to carbon cycles related to forest disturbance. As global environmental change continues into the future, incorporating the methods used in this project alongside climate metrics may be useful to inform forest management in determining change trajectory across forest ecosystems. A possible avenue to extend this study into ecological forecasting applications is to utilize agent-based modeling methods for modeling dead aboveground biomass in the Rocky Mountains and other boreal to alpine forest environments against predicted climate, fire, and bark beetle trends. Agent-based models (ABM) are similar to random forests in their capacity to model relationships between variables that interact at multiple scales to generate outcomes (Grimm et al., 2005). ABM methods offer specifically a predictive modelling capacity to extend the application of the current project results to estimate bark beetle risks of impact in future climate scenarios.

Another important piece of investigating environmental feasibility associated with this project is to model future changes to surface flow dynamics and erosion potential that may result from trends in disturbance as compared changes that result from dead aboveground biomass extraction for biofuel feedstock. 
[bookmark: _byj9ntvisdgo]5. Conclusions
This project determined that nine of the eighty-four predictor variables were the most important for modelling standing dead biomass, with elevation and total biomass being the strongest predictors. The forest disturbance and recovery trend classes from LandTrendr provided five of the nine most important predictors. Only the unfiltered LandTrendr outputs proved to be valuable in capturing trends at plot points where beetle-killed trees were located. This is likely due to the spatially and temporally distributed nature of bark beetle and disease disturbances.

Visually, the modeled aboveground dead biomass distribution aligned well with ADS and MTBS data. Agriculture areas were not included in high dead biomass estimates further supporting these methods and results. While the preliminary model is only a broad scale estimation of standing dead biomass, visual verification suggests these methods have high potential in the investigation of standing dead biomass distribution. Next steps of this project will be carried out by project partners to incorporate FIA plot data as the model response variable to refine this method and the model results. Following this important first step of mapping dead aboveground biomass, these data can be applied to subsequent feasibility assessments of harvesting beetle killed biomass for use as a biofuel feedstock.
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[bookmark: _3rdcrjn]7. Glossary
ABM – agent-based model
ADS – aerial detection survey
BANR – Bioenergy Alliance Network of the Rockies
Biofuel feedstock – organic material used to make biofuel
Carbon cycle – exchange of carbon through components of Earth (ex. air, water, woody biomass etc.)
CTI – Compound Topographic Index
ETM+ – Enhanced Thematic Mapper Plus
Landsat – joint NASA and USGS mission to provide satellite images of Earth since 1972
LiDAR – Light Detection and Ranging, remote sensing technique that uses light in the form of a pulsed laser to measure range
MTBS – Monitoring Trends in Burn Severity
NREL – Natural Resource Ecology Laboratory
OLI – Operational Land Imager
SRTM – Shuttle Radar Topography Mission
Tasseled Cap – a method of compositing imagery using the weighted sum of pixel values across a time series, whereby converting the original band values of an image to new band values that are useful for a particular interpretation
TCB – tasseled cap brightness
TCG – tasseled cap greenness
TCW – tasseled cap wetness
TM – Thematic Mapper
USFS – United States Forest Service
WRS – Worldwide Reference System
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[image: ]9. Appendices
Appendix A. The maps show the distribution of the major tree species within the study area layered over a map showing topography. 










Appendix B. Boxplot of untransformed standing dead biomass data from field in situ plot measurements. The top four outliers above 200 Mg/hectare (indicated by the arrows) were removed from the dataset. 
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Appendix C. Plot of predicted versus observed standing dead biomass.
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Appendix D. The map shows the ADS polygons layered over the dead aboveground biomass map. The polygons showing pest and disease disturbance align with the areas showing high standing dead biomass. 
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Appendix E. The map shows areas disturbed by fire outbreaks broken down by year from 2000-2014. The polygons align with areas showing high standing dead biomass.  
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