





#### Shoshone River Water Resources

Assessing Sediment Inputs into the Shoshone River in Wyoming to Determine Areas for Protections and Restoration Practices

> Robyn Holmes (Project Lead) Cassie Ferrante Nelson Lemnyuy Will Campbell





Pop-Up Project | Fall 2022

# **Project Location**

#### Study Area

- Shoshone River
  - Buffalo Bill Dam to Willwood Dam
  - Tributaries & irrigation canals feed into the river
- Surrounded by mountains
- Annual precipitation: 10.5in

#### Study Period

- Jan. 2019 Oct. 2021
  - While USGS operated a water monitoring station



Basemap Citation: NRGC, Esri, HERE, Garmin, FAO, NOAA, USGS, EPA, Esri, Here, Garmin, SafeGraph, METI/NASA, USGS, Bureau of Land Management, EPA, NPS. USDA, Esri, NASA, NGA, USGS



# **Historical Background**

- Sediments become trapped behind the Willwood Diversion Dam (WDD)
- Heavily concentrated when released, impairs downstream water quality
- 2016 release prompted the creation of three working groups to address sedimentation in WDD



Image: Carmen McIntyre

# **Project Partners**

#### WY Department of Environmental Quality

#### Shoshone River Partners

#### **USGS MT-WY Water Science Center**



#### David Waterstreet

Watershed Protection Program Manager



Carmen McIntyre

Watershed Coordinator



Jason Alexander
Supervisory Hydrologist



# **Community Concerns**



#### Ecological

- Fish spawning habitat
- Aquatic insects



#### Economic

- Rafting, angling, recreation
- Irrigated agriculture

#### **Quality of Life**

 Community member recreation



# Why remote sensing?

- Look at turbidity spatially
- Identify sources of sediment to prioritize watersheds for BMPs
- Estimate sediment input from inaccessible areas



# **Project Objectives**



Image: Carmen McIntyre

- Create categorical sediment contribution maps indicating priority tributaries
- Conduct precipitation analysis to better understand runoff events
- Analyze which land cover types are correlated with high turbidity



#### **Earth Observations**





#### **PlanetScope**

- 4 band (RGBn) imagery
- > 3m resolution
- Daily

#### **GPM IMERG**

- Precipitation estimations
- 10km resolution
- Daily



# **Sensing Turbidity**



- Light bounces off suspended sediment particles, increasing reflection
- Change in reflection differs across the light spectrum



#### **Methods**





# **Results: Empirical Study**



 Sulphur Creek (Upper Watershed)



Dry/Homesteader
Creek (Middle
Watershed)



PlanetScope Imagery

 Penney Gulch (Lower Watershed)



#### Sulphur Creek Example







#### **Results: Sediment Contribution Map**



 Turbidity change along part of the Shoshone River: Low, Moderate, High, based on a high storm day



# **Results: Turbidity Calibration**

- Calibrated reflectance to in-situ turbidity
- T = green / (a + b \* red)
  - ▶ a = 0.0473
  - ▶ b = 0.165
  - ▶ (r2 = 0.70)

NDTI = (Red – Green) / (Red + Green)

Measured Turbidity vs. Remotely Sensed Turbidity



## **Results: Precipitation Analysis**

| GPM<br>IMERG<br>Averaging<br>Time | R <sup>2</sup> , without<br>snowmelt<br>influence<br>(Apr to Oct) | R <sup>2</sup> , entire study<br>period |
|-----------------------------------|-------------------------------------------------------------------|-----------------------------------------|
| None                              | 0.37                                                              | 0.34                                    |
| Two-Day                           | 0.61                                                              | 0.57                                    |
| Three-Day                         | 0.59                                                              | 0.56                                    |



## **Results: Precipitation Analysis**

|                       |                                                                |                                         | 5000 -            |   |          |
|-----------------------|----------------------------------------------------------------|-----------------------------------------|-------------------|---|----------|
| GPM IMERG<br>Lag Time | R <sup>2</sup> , without<br>snowmelt influence<br>(Apr to Oct) | R <sup>2</sup> , entire<br>study period | - 4000 -<br>(NNJ) |   |          |
| One-Day               | 0.59                                                           | 0.55                                    | / Turbidity       | • | r = 0.59 |
| Two-Day               | 0.23                                                           | 0.22                                    | Mean Daily        | • |          |
| Three-Day             | 0.10                                                           | 0.09                                    | 1000 -            |   | •        |
|                       | •                                                              | •                                       | 0 -               |   |          |

0.0 0.2 0.4 0.6 0.8 1.0 1.2 One-Day Lag GPM IMERG (in/day)

## **Results: Land Cover Analysis**



Dominant land cover types are:

- Shrub/scrub
- Cultivated crops

Basemap Citation: Esri, HERE, Garmin, SafeGraph, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, USDA, Esri, NASA, NGA, USGS



## **Limitations and Uncertainties**

 Often missed storm runoff events because of clouds



Spectral data quality



Spatial resolution
of precipitation data (10km)



# Conclusions



- Remote sensing allows watershed managers to investigate sources of turbidity spatially
- Sediment plumes from small tributaries were clearly visible on multiple days
- PlanetScope data provided a spatial resolution suitable for looking at a small river, but the spectral resolution may have caused challenges with data analysis

Image: Carmen McIntyre

## **Future Work**

- Project will be continued during a 2nd term:
  - Investigate turbidity during snowmelt season
  - Soil Water Assessment Tool (SWAT) Hydrologic Model
  - Quantitative turbidity



#### ACKNOWLEDGEMENTS

A special thank you to our Science Adviser and Fellow:

- Dr. Austin Madson (University of Wyoming, Assistant Professor)
- Caroline Williams (NASA DEVELOP, Fellow)

We would also like to thank our project partners for their input and guidance:

- David Waterstreet (WYDEQ)
- Carmen McIntyre (WYDEQ, Shoshone River Partners)
- Jason Alexander (USGS)

Thank you to the WyGISC department for hosting us!

This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations.

#### **Backup Slides**

 $\bigcirc$ 

# **Sensing Turbidity**

#### NDTI = (Red – Green) / (Red + Green)



#### **Earth Observations**







#### **PlanetScope**

- 4 band (RGBn) imagery
- > 3m resolution
- Daily

#### **GMP IMERG**

Precipitation

#### Sentinel-2 MSI

- 8-band imagery
- 10m resolution



#### **Results: Dry/Homesteader Creek**







#### **Results: Penney Gulch**







PlanetScope Imagery

### **Results: Precipitation Analysis**





