

National Aeronautics and Space Administration

Chile Wildland Fires

Augmenting Wildfire Risk Assessment Efforts with Satellite-based Measurements of Soil Moisture and Vegetation Health in Central and South-Central Chile

Benjamin D. Goffin • Aashutosh Aryal • Quinton Deppert

Pop-Up Project | Summer 2023

ANNIVERSARY

TEAM

- Aashutosh Aryal
- Quinton Deppert
- Benjamin Goffin Team Lead

PRESENTATION OUTLINE

- Community concerns
- Partners
- Objectives
- Study Area & Period
- Methodology & Data
- Results
- Conclusions
- Limitations & future work
- Acknowledgements

COMMUNITY CONCERNS

Since 2010, parts of Chile have experienced:

- A megadrought
- Unprecedented wildland fires
- Increasing threats to...
 - Forested resources
 - Communities living at wildland-urban interface

Corporación Nacional Forestal (CONAF)

Embassy of Chile, Agricultural Office

Image credit: CONAF

OBJECTIVES

The goal of this project was to enhance future wildfire management efforts by:

- Incorporating NASA EOs of
 Vegetation health
 - o Soil moisture
- Comparing the conditions of
 Actual burn sites
 - o Control areas

Image credit: CONAF

STUDY AREA

Central and South-Central Chile (CSCC)

STUDY PERIOD

EARTH OBSERVATIONS

GPM

Landsat 9 OLI

SMAP

Terra MODIS

Aqua MODIS

Image credit: NASA

EARTH OBSERVATIONS

Platform & Sensor	Parameter	Spatial Resolution	Temporal Resolution
Landsat 9 OLI-2 (LaSRC v1.5.0)	Surface Reflectance	30 m	16 Days
Terra + Aqua MODIS (MCD64A1 v061)	Burned Area	500 m	Daily
Terra MODIS (MOD13A3 v061)	NDVI	1 km	Monthly
Terra MODIS (MOD16A2 v006)	ET	500 m	8 Days
GPM IMERG (GPM_3IMERGDF v006)	Precipitation	0.1 degrees	Daily
SMAP Radiometer L3 (SPL3SMP_E v005)	Soil moisture	9 km	2-3 Days
SMAP L4 (SPL4SMGP v007)	Soil moisture	3 km	Daily

ANCILLARY DATA

0 25 50 100 km

30m

Base map credits: Esri, CGIAR, HERE, Garmin, FAO, NOAA, USGS

METHODOLOGY

RESULTS – Precipitation deficit

Landsat 9 OLI

Terra MODIS

Aqua MODIS

Image credit: NASA

RESULTS – Precipitation Variability

RESULTS – Precipitation Deficit

RESULTS – Vegetation anomalies

Terra MODIS

Aqua MODIS

Image credit: NASA

RESULTS – Vegetation Anomalies

Variables:

- Monthly NDVI anomalies
- Period: 2010-2023 (Drought Period)
- Baseline Period: 2001-2009 (Pre-Drought Period)

Findings:

- Vegetation in stress
- Deteriorating vegetation health
- Increase in negative NDVI anomalies during megadrought period

RESULTS – Vegetation Anomalies (Fire Season)

ANALYSIS – Wildland Fires Delineation

GPM Landsat 9 OLI Image: Second se

SMAP

Terra MODIS

Aqua MODIS

Image credit: NASA

ANALYSIS – Wildland Fires Delineation

0 10 20 40 km

OLI-2

Base map credits: Esri, CGIAR, HERE, Garmin, FAO, NOAA, USGS

ANALYSIS – Wildland Fires Delineation

Selection Criteria

Elevation Range February 2023 Timber Plantations Wildland Fires (Conifer and (100-300 meters) Burned Areas Eucalyptus) • 59% Conifer • February 1-6 Affected Adult Wildland Fires Conifer plantations in **Burned Areas** Plantations burned areas (73% Coverage) (22%) • 58% Eucalyptus • Focus on 3 Affected Adult plantations in Regions: **Nuble**, Eucalyptus burned areas Biobío, Plantations and Araucanía (17%)

RESULTS – Wildfire Timeline

RESULTS – Land Cover Types Affected in Feb 1-6

RESULTS – Plantation Types Affected in Feb 1-6

RESULTS – Wildfire Against Control Areas

RESULTS – Elevation Range Affected in Feb 1-6

Terra MODIS

Aqua MODIS

Photo credit: NASA

Variables:

- > L4, surface, **dekad**
- Eucalyptus plantation

> 2017 fire

Finding:

 Potentially different terrestrial conditions across fire events

Terra MODIS

Aqua MODIS

CONCLUSIONS [1/2]

Using NASA EO and partners' input:

- We delineated the spread of the 2017 and 2023 Chilean wildfires
- We selected **burned and control areas** with homogeneous characteristics
- We captured the effect of the ongoing megadrought based on anomalies in
 - precipitation and
 - NDVI

Image Credit: CONAF

CONCLUSIONS [2/2]

Using NASA EO and partners' input:

- ✓ We found that burned areas may exhibit certain pre-fire conditions in SM and ET
- Our data suggests critical thresholds for
 - Surface SM (L4) below $0.075 \text{ m}^3/\text{m}^3$
 - ET above 170 mm/month
- These measures can help assess
 future wildfire risks and allocate resources to prevent and suppress wildland fires.

LIMITATIONS [1/2]

Remote sensing

- Limited return period, at times impacted by cloud cover
- ET and NDVI characterize fuel in the upper canopy, not ground dryness
- SMAP pixels are coarse and encompass different cover types
- Various processing levels produce conflicting information

LIMITATIONS [2/2]

- Environmental processes
 - Dynamics of underground fire within organic matter
 - Localized effect of fast and dry, easterly wind from Argentina
 - Lacked in-depth data about land-use/land-cover
 - Lacked access to in-situ soil moisture or ET measurements to validate Findings

FUTURE WORK

Next methodological steps:
 Further investigate what low SM and high ET corresponds to
 Validate threshold against burn areas and ignition points
 Compare new risk forecast against previous red-flags

Science communication goals:
Publish in Sustainable Horizons
Present at AGU Fall Meeting

Image Credit: CONAF

Acknowledgments

Partners

Gonzalo Esteban Tapia Koch (CONAF)
 Jorge Andrés Saavedra Saldías (CONAF)
 Fernando Vásquez (Embassy of Chile)
 Andrés Rodríguez (Embassy of Chile)

DEVELOP Science Advisors

- Dr. Kenton Ross (NASA LaRC)
- Dr. Venkat Lakshmi (University of Virginia)

DEVELOP Fellow N V V E R S A R Y Y E R S A R Y Y E R S A R Y E R S A R Y E R S A R Y E R S A R Y E R S A R Y E R S A R Y E R S A R Y E R S A R Y E R S A R Y E R S A R Y E R S A R Y Y E R S A R Y Y E R S A R Y Y E R S A R Y Y E R S A R Y

Image Credit: CONAF

This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations.