

Module 3108: Urban Areas

Urban DSM

<u>Michael Voltersen¹</u>, Thomas Esch², Christian Berger¹, Robert Eckardt¹

1 Friedrich-Schiller-University Jena Department for Earth Observation Jena, Germany 2 German Aerospace Center (DLR) German Remote Sensing Data Center Oberpfaffenhofen, Germany

Basics

Content of Module Urban Areas

- Introduction (Module #3104)
- Urban footprints (Module #3105)
- Urban land cover / land cover change classification (Module #3106)
- Extraction of urban objects (Module #3107)
- Urban DSM (Module #3108)
- Synergy of optical remote sensing and SAR (Module #3109)
- Tutorial Urban footprint mapping utilizing Sentinel 1 data (Module #3110)

Basics DSM Mapping Further Reading

Educational Objectives

Introduction

- Understand the importance of urban DSM mapping
- Understand SAR features relevant for urban DSMs
- Understand the different approaches established in urban DSM mapping from SAR data

Requirements

Basics

Introduction

DSM Mapping

- You know and understand the mathematical and physical basics (Module ID 1100: Mathematics & physics)
- You know and understand SAR technology (Module ID 1300: SAR basics)
- You know and understand main SAR processing steps (Module ID 1200: Data processing)

Further Reading

- You know and understand main image interpretation techniques (Module ID 2100: Image processing)
- You know and understand urban areas and their varieties (Module ID 3104: Urban Introduction)

Structure

- Introduction
- \circ $\,$ $\,$ Urban DSM mapping with SAR $\,$

Structure

- Introduction
- Urban DSM mapping with SAR

Introduction

Basics

Introduction

DSM Mapping

• Urban DSM = Digital Surface Model of settlements

Further Reading

- DSM describes the elevation above sea level of the ground and all features on it
- DTM (Digital Terrain Model) describes the ground elevation above sea level
- Normalized DSM can be derived by subtraction of DTM from DSM → contains only heights of objects on the surface

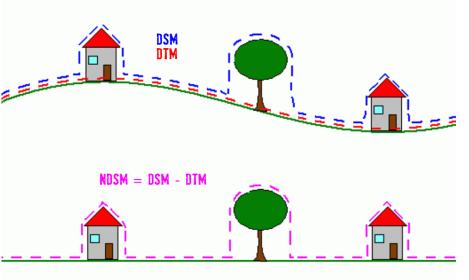
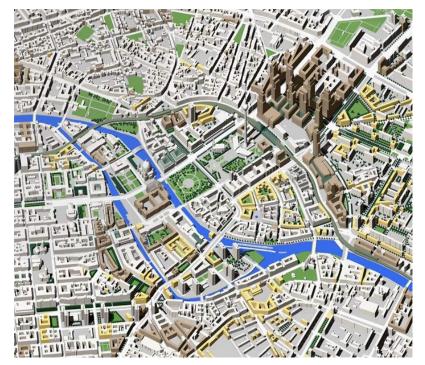


Fig.: DSM, DTM, and the calculation of an NDSM (http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed610_03.htm)



Importance of urban DSMs

- DSMs of urban areas are important for city planning, companies, and research
 - Quantification of solar insolation for photovoltaics
 - Telecommunication
 - Estate agencies
 - Transport

Basics

- Tourism
- Air stream analyses
- Flood models, noise models
- Damage detection
- 3D visualization
- Improved urban area mapping

Derivation of urban DSMs

Optical data

Basics

 Derivation based on matching stereo image pairs or analysis of shadows of objects on the surface for height estimation

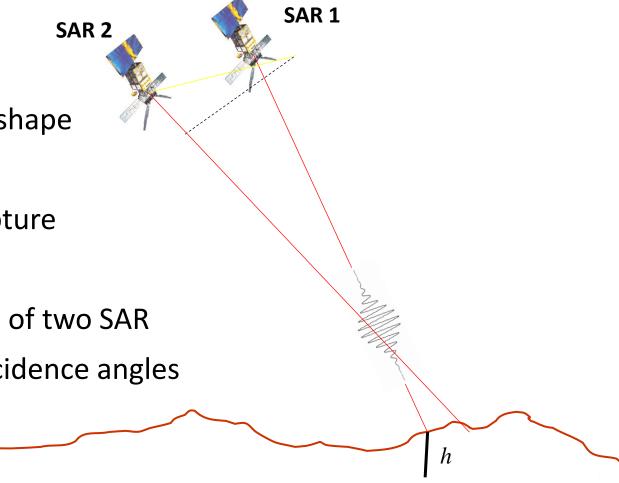
LiDAR (Light detection and ranging)

Precise DSM generation based on pulsed lasers measuring the distance to objects by time-of-flight

SAR

 Commonly phase information of complex SAR data under slightly different incidence angles are used (SAR interferometry)

Structure


- Introduction
- \circ $\,$ $\,$ Urban DSM mapping with SAR $\,$

Basics

Basics

- Challenge: accurate height and shape for each object of urban area
- Interferometry is capable to capture
 3D features of urban objects
- Interferogram: phase difference of two SAR scenes with slightly different incidence angles (see Module ID 2201:
 SAR interferometry basics)

Further Reading

DSM derivation with interferometric SAR data

Shape-from-shadow

Basics

Building footprints and heights estimated from shadows in amplitude images

- Shadow size linked to object height and incidence angle Ο
- 2 or more SAR images (from different directions) are Ο utilized to detect shadows
 - \rightarrow shape of buildings is described
- Building height either estimated from shadow length or from Ο interferogram (where shadows help to detect building footprints)
- Method fails for dense urban areas (layover and shadows occlude Ο building parts)

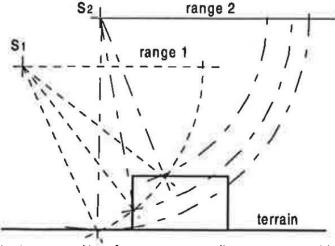


Fig.: Layover and interferometry – range distance to sensor 1 is equal for the three selected points, but varys for sensor 2 for the same points (Bolter & Leberl 2000)

Further Reading

Introduction

Approximation by planar surfaces

DSM Mapping

Filtering of interferograms to detect planar surfaces

- Segmentation of interferograms
- Line segments are clustered to planes by iterative region growing
- Resulting planes are approximated with horizontal planes
 → simulation of building roofs
- Accurate results only for large / isolated buildings

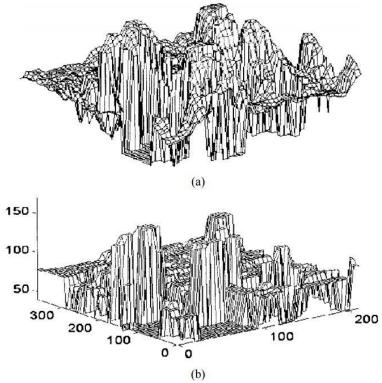


Fig.: Raw 3-D surface extracted from interferogram (top) and approximation by planar surfaces (bottom) with noise reduction, structure recognition and segmentation (Gamba et al. 2000)

Stochastic geometry

Basics

Shapes and position of buildings are modeled with unique building model

- Optimization of model parameters by amplitude, coherence, and interferometric phase
- Thorough object-oriented modelling helps to cope with noise
- Buildings modeled as parallelepipeds with gabled roof
- Method is limited to certain building shapes in order to reduce computation time

Basics

DSM derivation with interferometric SAR data

Interferogram filtering and 3D estimation

DSM estimation based on segmentation and classification

- Segmentation of the image to derive building footprints
- Interferometric heights used to determine ground altitude and matched with previously detected features
- Contextual information (such as road orientation and orthogonality of walls) utilized for corrections
- Modelling of different roof types
- Very flexible approach

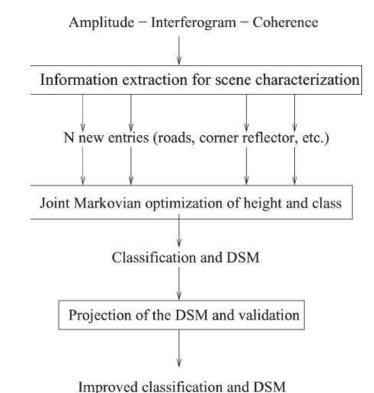
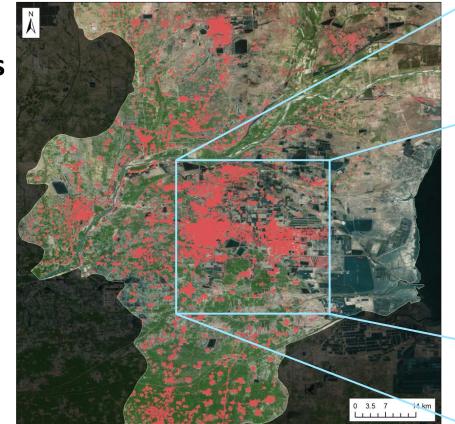
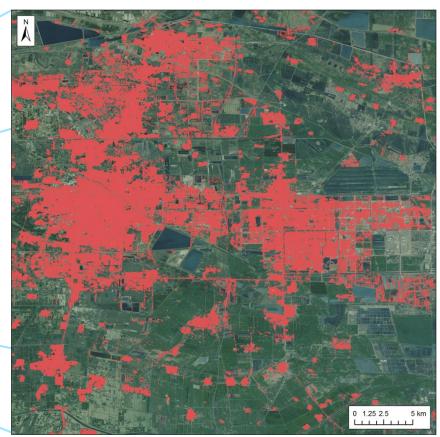
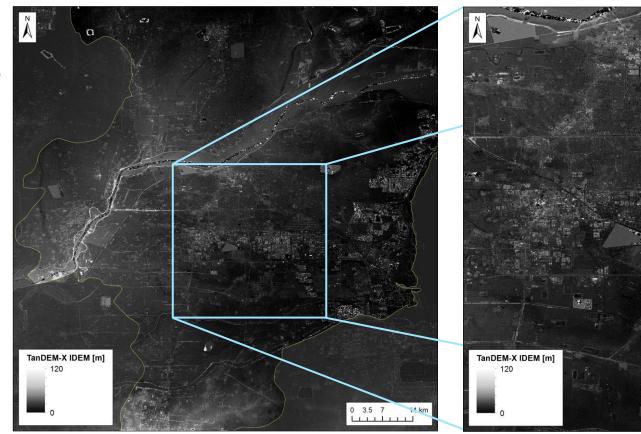


Fig.: Processing scheme for DSM derivation, height estimation and classification are jointly linked (Tison et al. 2007)



Unsupervised height derivation of built-up areas


TanDEM-X DEM and Global **Urban Footprint** (see Module 3702) used for DEM mapping



Unsupervised height derivation of built-up areas

 Relative change in elevation of pixels in contrast to neighbor pixels used for detection of objects on the ground

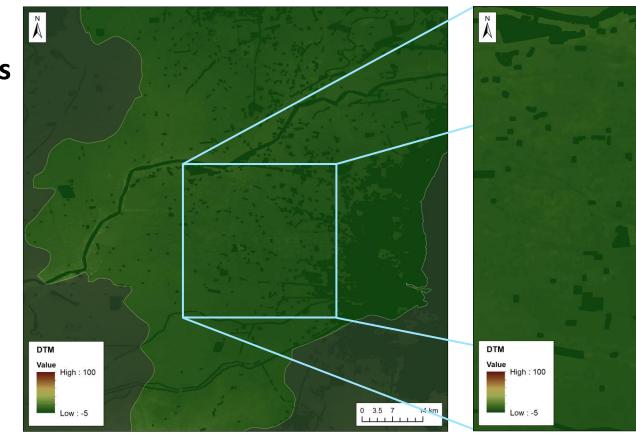
Dongying

0 1.25 2.5

TanDEM-X IDEM (DLR)

TanDEM-X IDEM (DLR)

Dongying


DSM derivation with interferometric SAR data

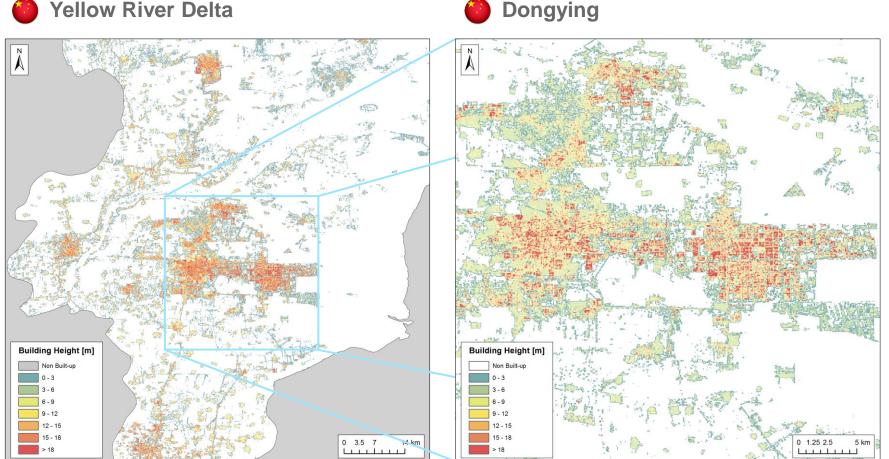
Unsupervised height derivation of built-up areas

- Delineation of ground Ο points by excluding the prior extracted objects
- Ground pixels used to Ο generate DTM with natural neighbors interpolation



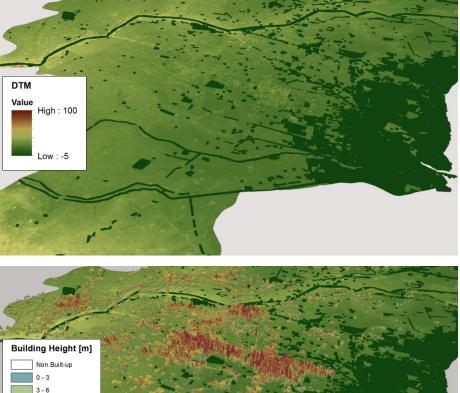
estimated DTM (DLR)

estimated DTM (DLR)R


1.25 2.5

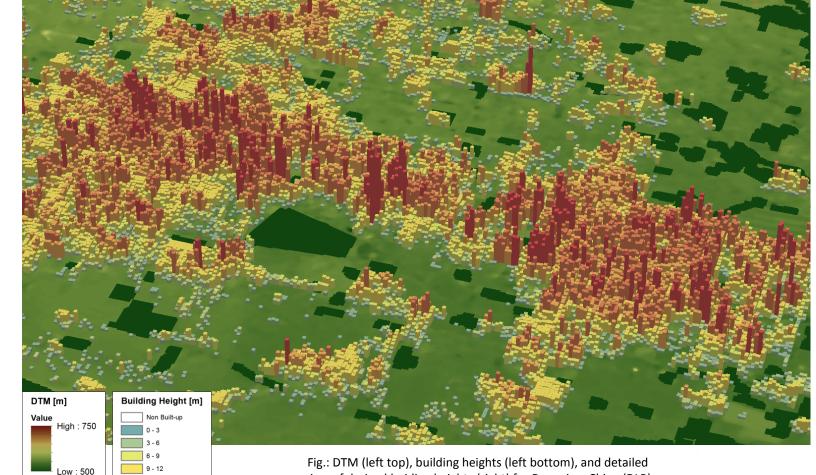
Unsupervised height derivation of built-up areas

Building heights derived Ο by subtraction of DTM from original DEM for pixels marked as urban in Global Urban Footprint



estimated building height (DLR)

estimated building height (DLR)


DSM derivation with interferometric SAR data

6 - 9 12 - 15

15 - 18

> 18

view of derived building heights (right) for Dongying, China (DLR)20

References and *further reading*

Basics

- Bamler, R., and Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14, R1-R54.
- Bolter, R., and Leberl, F. (2000). Phenomenology-based and interferometry-guided building reconstruction from multiple SAR images. Pages 687– 690 EURSAR 2000.
- Gamba, P., Houshmand, B., and Saccani, M. 2000. Detection and extraction of buildings from interferometric SAR data. IEEE Transactions on Geoscience and Remote Sensing 38:611–617.
- Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis (Remote Sensing and Digital Image Processing Series, Vol.
 2). Dordrecht: Springer Netherlands.
- Hinz, S., and Abelen, S. 2009. Theoretical analysis of building height estimation using space-borne SAR-interferometry for rapid mapping applications. Pages 163–168 in F. . P. N. Stilla U.; Rottensteiner, editor. Proceedings of CMRT09 City Models, Roads and Traffic. International Society for Photogrammetry and Remote Sensing.
- Kampes, B. M. (2006). Radar Interferometry: Persistent Scatterer Technique. (Remote Sensing and Digital Image Processing Series, Vol. 12). Dordrecht: Springer Netherlands.
- Marconcini, M., Marmanis, D., Esch, T., and Felbier, A. 2014. A novel method for building height estimation using TanDEM-X data. Pages 4804– 4807 2014 IEEE Geoscience and Remote Sensing Symposium. IEEE.
- Poli, D. and Caravaggi, I. 2012. Digital surface modelling and 3D information extraction from spaceborne very high resolution stereo pairs. JRC Scientific and Technical Papers.
- Quartulli, M. & Dactu, M. (2003): Information extraction from high-resolution SAR data for urban scene understanding. 2nd GRSS/ISPRS joint workshop on data fusion and remote sensing over urban areas, May 2003, pp 115–119.
- Rosen, P., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic Aperture Radar Interferometry. Proceedings of the IEEE, 88(3): 333-382.
- Soergel, U., editor. 2010. Radar Remote Sensing of Urban Areas. Springer Netherlands, Dordrecht.
- Tison, C., Tupin, F., and Maitre, H. 2007. A Fusion Scheme for Joint Retrieval of Urban Height Map and Classification From High-Resolution Interferometric SAR Images. IEEE Transactions on Geoscience and Remote Sensing 45:496–505.

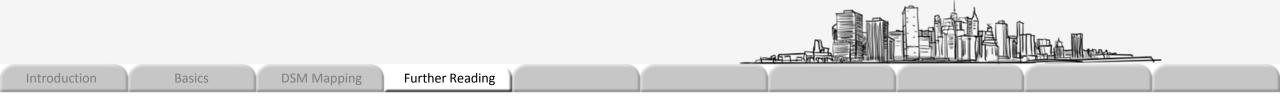


Image Credentials

Title Image by John Truckenbrodt - Pixoto.com

City vector designed by Molostock - Freepik.com

SAR-EDU – SAR Remote Sensing Educational Initiative

https://saredu.dlr.de/

