DEVELOP National Program
Python Package

(dnppy)

Software Assurance Classification
Report

Prepared by:

Name Date

Leslie J. Johnson, NASA LaRC 11/19/2014
Software Assurance Engineer
Mission Assurance Branch

NASA Langley Research Center
Hampton, VA 23681

1

Uncontrolled when printed. Check to verify correct version before use.

Revision and History Page

Revision L Release
No. Description Date
- Initial Release 11/19/2014
2

Uncontrolled when printed. Check to verify correct version before use.

Table of Contents

SECTION PAGE
1. INTRODUCTION L..ccoiiiiiiiiiiccece e
11 BACKGROUNDooiiicce e
2. REFERENCE DOCUMENTS ...t
3. SUMMARY e
3.1 SOFTWARE CLASSIFICATION ...
3.2 SOFTWARE SAFETY ..
3.3 SOFTWARE ASSURANCE EFFORT ...cotiiiiiiiiiiiiiiiiii
APPENDIX A: ACRONYMS L.

3

Uncontrolled when printed. Check to verify correct version before use.

1. INTRODUCTION

This report contains the software assurance classification assessment which identifies
and evaluates the characteristics of software in determining the software’s classification,
software safety-criticality, and level of software assurance to be applied to a Project.

1.1 Background

Teams in the DEVELOP program increasingly find themselves using some level of
programming to manipulate data. Much of the time, this manipulation is performed in
Python. The DEVELOP Python package, referred to as “dnppy” is being created to
improve institutional knowledge retention, open the DEVELOP toolkit for public
contributions and use, and represent DEVELOP in the public domain. It is a joint social
media and programming capacity building endeavor.

The dnppy package will be used to functionalize common programming tasks in the
geospatial community, specifically for working with NASA data products. It will include
functions for processing satellite data and assist in structuring analysis to reduce the
startup time for DEVELOP teams to learn programming and create tools for end users.

This software can streamline common processing tasks of NASA data products.
The package is a python module, written entirely in python.

Assumptions, Limitations, & Errors

- Many functions require the arcpy module, which comes with Arcmap

- There is presently no functionality built into the module that subjects the users to
functionally inherent errors.

2. REFERENCE DOCUMENTS
The following documents were used or referenced in the development of this report:

Document No. Document Title

NPR 7150.2A NASA Software Engineering Requirements
NASA-STD-8739.8 NASA Software Assurance Standard

NASA-STD-8719.13B | NASA Software Safety Standard

LAPD 5300.1 Program/Product Assurance

LPR 7150.2 LaRC Software Engineering Requirements

LPR 5300.1 Product Assurance Plan

LMS-CP-4754 Software Assurance (SA) for Development and Acquisition
3. SUMMARY

The following paragraphs summarize the results and describe the details used to
determine the software classification assessment for this report.

4

Uncontrolled when printed. Check to verify correct version before use.

3.1 Software Classification

According to LPR 7150.2, the software component for this Project is classified as Class
E — Small Light Weight Design Concept and Research and Technology Software which
is defined as

1. Software developed to explore a design concept or hypothesis, but not used to
make decisions for an operational Class A, B, or C system or to-be built Class A,
B, or C system, or

2. Software used to perform minor desktop analysis of science or experimental data.

As such, the Project shall follow the instructions and complete the compliance matrix in
LMS-CP-7150.6, Class E Software, which applies to all Class E software that is not
safety-critical.

3.2 Software Safety

The Software Safety Litmus Test below is applied to all projects with software to
determine if the software is safety-critical. If the software is determined to be safety-
critical, then the project must adhere to the NASA-STD-8719.13, NASA Software Safety
Standard.

A software component is considered safety-critical if it meets any of the following criteria:

Software
components

a. Resides in a safety-critical system (as determined by a hazard analysis) No
AND at least one of the following apply:
(1) Causes or contributes to a hazard

Criteria:

(2) Provides control or mitigation for hazards

(38) Controls safety-critical functions

(4) Processes safety-critical commands or data

(5) Detects and reports, or takes corrective action, if the system reaches a
specific hazardous state
(6) Mitigates damage if a hazard occurs

(7) Resides on the same system (processor) as safety-critical software

b. Processes data or analyzes trends that lead directly to safety decisions No

c. Provides full or partial verification or validation of safety-critical systems, No
including hardware or software subsystems.

The software components in this Project do not reside in a safety-critical system; process
data or analyze trends that lead directly to safety decisions or provide full or partial
verification or validation of safety-critical systems.

The LaRC Safety and Mission Assurance Office have determined that the software
components in this Project are not safety-critical.

5

Uncontrolled when printed. Check to verify correct version before use.

3.3 Software Assurance Effort

The software assurance effort is based on the software class and impacts from potential
failure. In accordance with LMS-CP-4754 software assurance is not applicable for non-
safety critical Class E software developments.

APPENDIX A: ACRONYMS

CP Center Process

LaRC Langley Research Center

LAPD Langley Policy and Directives

LMS Langley Management System

LPR Langley Procedural Requirements

NASA National Aeronautics and Space Administration
NPR NASA Procedural Requirement

SA Software Assurance

STD Standard

6

Uncontrolled when printed. Check to verify correct version before use.

