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1. Abstract  
The Platte River Basin (PRB) represents a critical dynamic ecosystem where wetlands play a pivotal role as 
essential habitats for local and migratory birds, as well as various flora and fauna. It also provides many 
crucial ecosystem services that directly and indirectly benefit human welfare. However, it is threatened by 
anthropogenic activity, climate change, and urbanization. Our team partnered with Audubon Great Plains, the 
regional office of a national non-profit organization, to analyze the future potential development of the 
region and its potential impact on the wetlands. We utilized remotely sensed data, such as Landsat 8 
Operational Land Imager and Suomi National Polar Orbiting Partnership Visible Infrared Imaging 
Radiometer Suite, as well as NASA Socioeconomic Data and Application Center data, to simulate urban 
growth potential up to 2050 using the open-source FUTure Urban-Regional Environment Simulation model. 
Our results for two proposed scenarios (all wetlands are protected, and no wetlands are protected) revealed 
that at least 56 counties out of 81 in the PRB would experience growth by the year 2050. The results for the 
first scenario show that there will be no loss of wetlands in the future. However, the results for the second 
scenario indicate a basin-wide reduction of 43.22 square kilometers (0.58%) in wetland areas, leading to a 
significant loss of bird habitat, critical for conservation. The results will help Audubon Great Plains' Urban 
Woods and Prairies Initiative to lead awareness workshops for communities about wetland protection and to 
form impactful conservation strategies. 
 
Key Terms 
FUTURES, urban growth model, Platte River Basin, urban development, wetland loss, land use/land cover 
change   
 

2. Introduction 
2.1 Background Information 
Wetlands, often called “nurseries of life,” are ecological systems that serve as vital habitats for biodiversity 
(U.S. Environmental Protection Agency [EPA], 2004). They provide essential ecosystem services that directly 
and indirectly contribute to human welfare, including regulating services (such as water filtration, flood and 
erosion control, microclimate regulation) and supporting services (e.g., nutrient cycling, water conservation, 
carbon sequestration; Chatterjee et al., 2015; Loiselle et al., 2023; Kadykalo et al., 2021). For example, when 
rivers overflow, wetlands absorb the excess water and slow down the floodwaters, preventing damages to the 
built environment (U.S. EPA, 2004). However, wetlands are among the most vulnerable ecosystems, facing 
threats from climate change, human activity, and urbanization (Salimi et al., 2021; Xiong et al., 2023; Johnson 
et al., 2013; Lee et al., 2006). These pressures degrade the quality and functionality of wetlands, reducing their 
ability to provide these vital services and impacting both ecological health and human well-being.  
 
The Platte River Basin (PRB), spanning Nebraska, Colorado, and Wyoming, covers approximately 222,740 
square kilometers (about 86,000 square miles; Figure 1). Its wetlands serve as vital habitats and prominent 
migratory and breeding stopovers for hundreds of bird species including endangered whooping cranes, piping 
plovers, and interior least terns (National Research Council, 2005). Protecting and restoring these threatened 
wetlands is critical for addressing impacts of climate change, particularly concerning carbon and nutrient 
cycles, climate adaptation, and mitigation (Moomaw et al., 2018). Understanding and predicting how these 
wetlands respond to stressors is crucial in developing effective long-term land management strategies 
(Mantyka-Pringle et al., 2014).  
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Figure 1. Map showing the Platte River Basin. 

 
Remote sensing products and tools are reliable and powerful methods for assessing physical environmental 
changes over time, including observing urban growth and riparian areas (Kamran & Yamamoto, 2023; 
Lechner et al., 2020). Using remote sensing imagery provides a strong foundation for understanding patterns 
and trends of temporal land use/land cover (LULC) change in the PRB. Urban growth models (UGMs), 
which utilize area-specific parameters such as remote sensing inputs to forecast future growth patterns, are 
valuable for developing long-term strategies for wetland ecosystem protection and restoration (Wang et al., 
2024; Yao et al., 2016). The Future Urban-Regional Environment Simulation (FUTURES) model is a versatile 
UGM capable of large-scale processing, making it highly suitable for the PRB (Meentemeyer et al., 2013; Van 
Berkel et al., 2019). Similar to our study, FUTURES has been used to analyze the impacts of potential urban 
encroachment on habitat fragmentation and ecosystem services, demonstrating how conservation initiatives 
can incorporate this information into their strategies (Van Berkel et al., 2019; Pickard et al., 2016; Dorning et 
al., 2015). To pursue this objective, we partnered with Audubon Great Plains (AGP) to study spatiotemporal 
LULC changes within the PRB from 2001 to 2021, then used these change trends as well as other suitability 
parameters and major drivers to forecast LULC change patterns for 2030, 2040, and 2050, resulting in a study 
period of 50 years. 
 
2.2 Project Partners and Objectives 
Audubon Great Plains (AGP) is the regional office of the National Audubon Society for Nebraska, North 
Dakota, and South Dakota. The organization uses science, habitat restoration, outreach, and education to 
address core threats to birds in the region. AGP’s mission is to preserve native and migratory bird habitats to 
protect endangered species for the present and the future. AGP reaches millions of people annually through 
its state programs, local chapters, and nature centers. Our partners recognize that developing adaptive 
wetlands management strategies supported by a solid scientific foundation is essential for maintaining 
biodiversity and ensuring the resilience of this vital natural resource against future environmental challenges 
and anthropogenic pressures.  
 
In the previous term of the project, the team used Landsat 8 Operational Land Imager (OLI) and Sentinel-2 
Multispectral Instrument (MSI) to 1) assess LULC change within both the Central Platte River Basin from 
2013 to 2023 and thirteen priority cities from 2019 to 2023 and 2) depict flood risk for one priority city using 
an extreme flood event in 2019. Results showed a basin-wide decrease in agriculture, vegetation, and 
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grassland coverage. One focal city, Grand Island, NE, tripled in percentage of urban coverage, making it a 
prime candidate for restoration efforts. Their recommendations for future work included using a UGM to 
forecast LULC change to predict future vulnerabilities.  
 
The objective of this project’s second term was to assess the feasibility of using Landsat imagery and 
FUTURES to highlight potential restoration sites in support of our partner’s goal to protect wetland areas 
vulnerable to urbanization. Additionally, we aimed to predict LULC change in the PRB to inform selection of 
wetland protection sites vulnerable to urban encroachment. To accomplish this, we projected LULC change 
into 2030, 2040, and 2050 to produce wetland vulnerability maps and examine the impact of future 
urbanization on wetlands in the PRB. 

 

3. Methodology 
Our team developed a replicable methodology for forecasting urban growth and analyzing its impact on 
wetland areas. We utilized Landsat 8 OLI and Suomi-National Polar Orbiting Partnership (NPP) Visible 
Infrared Imaging Radiometer Suite (VIIRS) imagery to generate a Normalized Difference Vegetation Index 
(NDVI) and Nighttime Lights data, respectively. We integrated these datasets, along with additional 
supplemental data, to create a comprehensive database for training the FUTURES model. Using these inputs 
for the simulation, we generated final maps and GeoTIFFs depicting potential urban growth in the PRB. 
Subsequently, we conducted statistical and wetland vulnerability analyses to quantify forecasted LULC 
changes and assess the extent of potential wetland degradation. These analyses offered valuable insights into 
areas where restoration efforts can be prioritized to protect vulnerable wetland regions. 
  
3.1 Data Acquisition  
3.1.1 LULC Data 
To run the FUTURES UGM, we acquired National Land Cover Database (NLCD) datasets from Google 
Earth Engine (GEE). The FUTURES model requires precise projections of land consumption at subregional 
levels for data training (Dewitz & United States Geological Survey, 2021; Dewitz, 2023). These projections 
were essential for determining the amount of land area to be converted over specific time intervals and for 
effectively reducing assumptions of stationarity in the model. 
 
For land consumption input, either the NLCD or a custom classification can be utilized. We selected the 
NLCD because it ensures that the LULC classification is consistent and reliable over an extended period. By 
analyzing changes in existing maps, such as the NLCD, we obtained accurate inputs for land conversion. This 
enhanced the precision and effectiveness of the model in urban growth analysis. We selected 5-year increment 
data, rather than selecting data from every consecutive year within our time range, to reduce processing time 
in FUTURES. We chose this approach assuming 5-year intervals are sufficient to capture noticeable LULC 
change (Kii, 2021).  
 
3.1.2 NDVI  
Urban development generally negatively impacts the quality and quantity of vegetation (Zhang et al., 2022). 
We incorporated an NDVI to delineate vegetation and vegetation stress, which has previously been used for 
studies in agriculture and LULC change (United States Geological Survey [USGS], n.d., Huang et al., 2021). 
To evaluate changes in vegetation health in the PRB, we collected Landsat 8 OLI data from GEE and derived 
NDVI values (Equation 1). Higher NDVI values typically correspond to healthier vegetation (Martinez & 
Labib, 2023). To enhance our predictions, we integrated NDVI into the FUTURES UGM for data training 
purposes. 
 

NDVI = 
NIR - R

NIR + R
(1) 

 
 

Equation 1. NDVI calculation. NIR – Near infrared, R – Red bands. (Kriegler et al., 1969) 
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3.1.3 Census Data and Population Projections 
The DEMAND sub-model in the FUTURES UGM quantifies per capita land demand across different 
subregions. It essentially determines how much land will be required for future scenarios of urbanization 
based on projected population data. By analyzing spatiotemporal land use patterns, the model establishes the 
relationship between population growth and development demand. For each historical time step (2001, 2006, 
2011, 2016, and 2021), we utilized county-level population totals obtained from the National Historical 
Geographic Information Systems (NHGIS) and U.S. Census Bureau to analyze changes over time, providing 
insight into how population change impacts land use (Manson et al., 2023). 
 
The model not only uses historical data as a non-stationary time series parameter but also incorporates future 
population projections to predict land use needs. These projections help the model estimate the demand for 
land as the population grows. To support this, we acquired annual population growth projections by county 
for every 5-year interval from 2025 to 2050 from the NASA Socioeconomic Data and Applications Center 
(SEDAC; Hauer, 2021). 
 
3.1.4 TIGER/Line Study Area Boundaries 
As part of the stationary time series parameters essential for performing FUTURES analysis, we included 
study area boundaries, which encompassed state and county borders obtained from Topologically Integrated 
Geographic Encoding and Referencing (TIGER)/Line Shapefiles. This was important for setting the spatial 
extent of the study area. Additionally, we incorporated data on physical characteristics, such as roads, 
hydrology, and major cities, obtained from the same data source. These datasets served as predictors in the 
training of the FUTURES model. 
 
3.1.5 Digital Elevation Model 
Slope gradient is also one of the predicting stationary time series parameters of development potential used in 
the FUTURES UGM. To obtain these data, we acquired a Digital Elevation Model (DEM) raster pertaining 
to our study area from the USGS 3D Elevation Program (3DEP). The DEM data help in understanding the 
topographical features of the region, which can significantly influence urban expansion patterns. We 
incorporated these data for more accurate modeling of potential growth areas, to ensure we accounted in our 
projections for physical land constraints. 
 
3.1.6 Nighttime Lights Data/VIIRS 
Further, in our dataset for the model, we included NASA’s Nighttime Lights data from the VIIRS sensor on 
the Suomi-NPP satellite. Its Day/Night Band (DNB) collects global low-light imaging data that captures 
electric lighting from human settlements on Earth's surface (Elvidge et al., 2017). We included Nighttime 
Lights data from 2021 as a supporting stationary dataset to complement our non-stationary data, such as 
LULC, to confirm the most populous and developed areas within the PRB. 
 
3.1.7 Protected Areas/PAD-US 
Another parameter that we included in the FUTURES simulation model is protected areas acquired from the 
USGS Protected Areas Database of the United States (PAD-US). These data provide information about 
protection statuses of parks and open spaces across the United States, utilizing three different Gap Analysis 
Project (GAP) status classes: disturbance allowed, disturbance suppressed, extraction allowed. We needed 
these data to mask protected areas in the FUTURES data training, ensuring that these land use classes are not 
considered for future development. 
 
Table 1  
Datasets, descriptions, and purpose for gathering, for which years they were acquired, and sources. 

Dataset Description / Purpose Years Acquired Source 
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NDVI Normalized Difference 
Vegetation Index/used for 
assessing vegetation health and 
change 

2021 GEE, Landsat 8 OLI 

NLCD Comprehensive, national LULC 
data 

2001, 2006, 2011, 
2016, 2021 

USGS, GEE 

Population data Total population estimations 2001, 2006, 2011 
2016, 2021 

IPUMS NHGIS 
U.S. Census Bureau 

Population projections County-level population 

projections 

2025, 2030, 2035, 
2040, 2045, 2050 

NASA SEDAC  

Study area boundaries 
and inventory 

Shapefiles of study area 
boundaries (states, counties, 
census tracts), inventory (roads, 
water lines and water areas, urban 
centers) 

 2023 U.S. Census Bureau 
TIGER/Line 

Digital Elevation 
Model  

1-arc DEM for slope analysis of 
the study area (approx. 30-meter 
resolution) 

2021, 2022, 2023 USGS, 3DEP 

Nighttime Lights Remotely senses lights at night 2021 NASA’s Black 
Marble, VIIRS of 
Suomi NPP  

Protected area Protected Areas Database of the 
United States, an official 
inventory of public parks and 
protected open space 

 PAD-US, USGS 

 
3.2 Data Processing 
3.2.1 Normalized Difference Vegetation Index 
After acquiring the data, we processed the necessary raw data to prepare for analysis. We calculated NDVI in 
GEE by first filtering the imagery according to our study area boundary, then by dates from June 1, 2021, to 
September 30, 2021. We also filtered the data by removing imagery with cloud cover greater than 20%. Then, 
we calculated the median value at each pixel across the entire image collection. To calculate the NDVI we 
extracted two bands, near infrared and red, and calculated the ratio between the two (Equation 1). The final 
NDVI product was a simplified image, derived as a single band (Kriegler et al., 1969; Huang et al., 2021).   
 
3.2.2 Ancillary Data  
For processing the population and population projection data, we extracted the totals for all years of interest 
by the counties within the study area and compiled them in a table. To delineate the boundaries of the 
counties within the PRB region, we processed the data in ArcGIS Pro, which resulted in the selection of 81 
counties. We did similar data processing for the physical characteristics, such as roads, hydrology, and major 
cities. Additionally, to incorporate the slope gradient as a stationary parameter in the FUTURES simulation, 
we prepared and processed the DEM raster inputs in ArcGIS Pro using the Mosaic to New Raster tool, 
which allowed us to combine all the images and filter them by the study area. Furthermore, we also clipped 
PAD-US data to our study area, focusing specifically on GAP Status 1 and GAP Status 2. This selection was 
made because GAP Status 1 represents areas managed for biodiversity, where natural disturbance is allowed 
to proceed or is mimicked by management, ensuring minimal human interference. GAP Status 2, however, 
includes areas also managed for biodiversity, but where natural disturbance is suppressed. By concentrating 
on these categories, we were able to accurately identify and protect regions with the highest conservation 
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value, ensuring that the FUTURES model reflects environmental constraints within our study area (USGS, 
2024). 
 
3.2.3 Nighttime Lights 
The Nighttime Lights data from Suomi-NPP VIIRS had a much lower resolution of 463.83 meters, which 
was coarser than the rest of our input data. Due to this discrepancy, it was necessary to adjust the resolution 
for consistency in our analysis. After downloading the data, we resampled it in ArcGIS Pro to a finer 
resolution of 30 meters, aligning it with the resolution of the NDVI and LULC datasets. 
 
3.2.4 Preparing the Database in GRASS GIS  
Once we set up the Geographic Resources Analysis Support System (GRASS) GIS environment, we 
imported our datasets into a GRASS GIS database. The computational region was set to the extent of the 
study area. We aligned the cells by using one of the LULC layers as a reference, ensuring that all subsequent 
spatial analyses were consistent with the existing raster data. 
 
We derived predictors for our model from our datasets. The predictors included slope, distance to protected 
areas, distance to lakes/water, distance to roads, distance to city centers, forest, NDVI, and the Nighttime 
Lights data. The slope, derived from the DEM, indicated areas where steeper slopes may be less suitable for 
development. Areas near protected areas, including lakes or water, can attract urban growth due to their 
scenic appeal (Radeloff et al., 2010). Between 1940 and 2000, 28 million housing units were developed within 
50 km from protected areas; 940,000 houses were built near national forests, with at least 20% by 1990 built 
within 1 km of protected areas (Radeloff et al., 2010). Road density and proximity to city centers are strong 
indicators of potential urban development. Dense road networks in suburban areas facilitate development, 
while city centers act as hubs for concentrated population and economic activities (Zhao et al., 2017). Forests 
and healthy vegetation both have positive effects on urban growth because they attract residents who seek 
proximity to natural green spaces as desirable living environments (Jung, 2023). The Nighttime Lights data 
were also added as a driver of urban growth because illuminated places indicate proximity to urban areas and 
can influence future urban development. 
 
3.3 Data Analysis 
3.3.1 FUTURES Simulations 
We defined two distinct scenarios to explore the impacts of wetland protection on urban growth using 
NLCD data. The NLCD provides detailed land cover information, which we utilized to identify and 
manipulate wetland areas for our simulations. The FUTURES model runs simulations based on the 
interactions between three sub-models: POTENTIAL, DEMAND, and Patch-Growing Algorithm (PGA) 
(Figure 3). The POTENTIAL sub-model combines LULC with socio-economic and physical environmental 
factors, including both natural and infrastructure features, to determine the possibility of development in an 
area. The DEMAND sub-model combines population change trends with LULC to determine the likelihood 
of development in an area. The PGA is a stochastic algorithm that combines the possibility of development 
from the POTENTIAL sub-model and the likelihood of development from the DEMAND sub-model to 
determine where development is likely to occur (Meentemeyer et al., 2013). We used the compiled database 
containing predictors derived from the input datasets to run the FUTURES submodels (Figure 2; Table 1). 
Each submodel has intermediate steps that contribute to the overall modeling process, ultimately leading to 
future predictions provided by the PGA submodel.  
 



   
 

7 
 

Figure 2. FUTURES flow chart.  
 

 
Figure 3. The interaction between FUTURES submodels for simulating predictions: POTENTIAL (likelihood 

of growth), DEMAND (location of growth), and PGA (suitability for growth).  
 
The simulations produced six raster maps, three for each scenario, representing the years of interest (2030, 
2040, 2050). Each map depicted a forecast of urban growth trends in the PRB for its respective year and 
scenario. Together, these forecasts enabled us to analyze the PRB's potential future development patterns and 
their impact on wetlands. 
 
3.3.2 Statistical Analyses 
After obtaining our urban growth projections for the two scenarios, we calculated the area of land classified 
as urban and the area of land classified as wetland for 2021, 2030, 2040, and 2050. We also calculated the 
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percentage of land classified as urban and the percentage of land classified as wetland for 2021, 2030, 2040, 
and 2050 (Table B1; Table C1). We performed these calculations within each of the 81 counties in the study 
area. Using these percentages, we then assessed the percent change of urban and wetland areas within the 
entire basin. Finally, we created summary statistics to analyze the total, average, minimum, and maximum 
LULC changes. These analyses allowed us to evaluate the statistical change in the LULC classes between the 
decadal time steps for each scenario, which we used to determine basin-wide wetland vulnerability as well as 
counties with the higher amounts of projected wetland area loss.   
 

4. Results & Discussion 
4.1 Analysis of Urban Growth Projections 
After generating the final maps, we compared the results for each scenario (Figure A1 and Figure A2). Our 
findings indicate that, under both scenarios, approximately 5% of non-urban areas are projected to be 
converted to urban areas by 2030, 8% by 2040, and 11% by 2050 (Figure 4). However, in scenario 1, no 
urban growth is projected to occur within wetland areas, while in scenario 2, there is a noticeable 
encroachment of urban development into wetland regions. When analyzing growth by county or city, rather 
than the entire basin, a different pattern emerges (Table B1). The average percentage change in urban growth 
across all counties by 2050 is projected to be 7%, with Banner County, Nebraska, experiencing the maximum 
projected change of 31.45%. 
 
The total area of land conversion projected by 2050 is approximately 1,270 km², with Larimer County, 
Colorado, expected to undergo the largest conversion, developing into over 109 km² of urban area. In 
contrast, the average area change across all counties is about 14 km². Notably, 23 out of 81 counties within 
PRB are not projected to experience any urban growth at all. This is likely due to historical and projected 
population decreases combined with relatively minor historical urban growth from 2001 to 2021, resulting in 
a low likelihood of urban growth within these counties.  
 

 
Figure 4. Projected Urban Growth in the Platte River Basin 

 
It is important to highlight in the example of Lincoln, Nebraska in Lancaster County that most urban growth 
is projected to occur by 2030, with a 7% increase (represented in yellow on the map), followed by an 
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additional 5.33% in 2040 (represented in orange), and 5.06% by 2050 (represented in red), totaling 17.38% 
growth in 25 years (Figure 5). Many other counties projected to grow show a similar trend, with significant 
urban growth anticipated by 2030. For example, Larimer County, Colorado is projected to grow by more than 
12% (49 km²) by 2030, followed by 8% (33 km²) by 2040, and an additional 7% (28 km²) by 2050. These 
findings underscore the urgency of implementing wetland restoration and protection strategies across 
multiple regions. 
 

 
Figure 5. Urban growth projection on the case of fragment of Lincoln, Nebraska. 

Service Layer Credits: Nebraska Game & Parks Commission, Esri, TomTom, Garmin, FAO, 
NOAA, USGS, EPA, NPS, USFWS 

 
 
4.2 Analysis of Wetland Vulnerability 
Our findings regarding wetland vulnerability indicate that, under Scenario 1, no wetlands will be lost by 2050. 
However, in Scenario 2, 43.22 km² (about half the area of Manhattan) of the total 7,423.55 km² of wetlands 
would be lost to urban encroachment, representing 0.58% of the wetland area (Figure 6). Although a 0.58% 
loss of wetland area across the entire basin might seem insignificant, even this small percentage can have 
serious consequences for critical bird habitats, leading to fragmentation and disruption of habitat 
connectivity. Also, we see from our results that some counties would experience significantly higher 
percentages of wetland loss, further intensifying these impacts. 
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For instance, Broomfield County, Colorado is projected to lose 52.44% of its wetlands by 2050, while Denver 
County, Colorado is projected to lose 49.36%. To further summarize these findings, by 2050, 33 counties are 
expected to lose less than 1% of their wetlands, 13 counties will lose between 1% and 5%, and 5 counties will 
lose up to 13% (Table C1). The two Colorado counties mentioned above will experience the most substantial 
losses—nearly 50% or more. On the contrary, as mentioned previously, at least 23 counties are not projected 
to experience any urban growth by 2050, presenting the area of least concern regarding wetland vulnerability. 
 

Figure 6. Predicted wetland loss in the Platte River Basin.  

 
4.3 Errors & Uncertainties  
In our project, several uncertainties were identified that require consideration. Our population estimates were 
captured and conducted at the county level, rather than on a finer scale such as census blocks. While county-
level data provide a broad overview, using fine-scale data like census blocks would offer a more precise 
distribution of the population across the PRB. This could significantly enhance the accuracy of the urban 
growth model by reflecting more detailed spatial variation in population density and distribution. 
 
Predicting urban growth is inherently uncertain due to factors like migration patterns, urban planning 
strategies, economic fluctuations, policy changes, and climate change impacts on wetlands. This unpredictable 
nature of urban growth will always have some degree of uncertainty regarding future developments. In 
addition to population changes, other agents such as agriculture, industry, and infrastructure development 
also influence land use and urban growth patterns. These factors could have differing demands for land use 
and potentially alter the trajectory of urban expansion. Including these variables in the model could provide a 
more holistic view of future land use changes and improve the robustness of the forecasts. 
 
The FUTURES UGM offers a valuable feature for exploring different urban development patterns, including 
policies that encourage infill versus sprawl (Petrasova, 2016). In our project, we did not utilize the advantage 
of simulating these behaviors. Exploring a range of development patterns would provide a more 
comprehensive analysis of urban growth, highlighting the trade-offs between sprawl and infill development. 



   
 

11 
 

This could inform more effective urban planning strategies and policy decisions aimed at sustainable 
development. 
 
4.3 Feasibility & Partner Implementation  
Despite uncertainties, we found that NASA Earth observations, the FUTURES urban growth model, and our 
products are feasible for our partner to use in their wetland protection and restoration efforts. Earth 
observations from Suomi-NPP VIIRS and Landsat 8 OLI capture the large scale of the basin while being 
reliable and accessible. The FUTURES model is capable of processing large amounts of data over large scales 
while being free to use and open source. Our results show that these data and methods are feasible for our 
partner to implement into their consideration of where to focus their conservation efforts to protect the 
wetlands that are most vulnerable to urban encroachment. Our products depicting urban growth and wetland 
vulnerability in 13 priority cities are useful to AGP in deciding which cities they will focus on. Replicating this 
methodology by incorporating finer scales of population projection data, using more detailed wetland data 
such as the National Wetland Inventory or internal wetland datapoints, and producing additional scenarios of 
urban growth to envision various futures would additionally serve the partner’s decision-making.  
 

5. Conclusions 
To conclude, while simulation and urban growth models inherently involve a degree of uncertainty stemming 
from their reliance on current and historical data to forecast future scenarios, the insights they provide remain 
invaluable. These models do not guarantee that present patterns and trends will persist unchanged, but they 
offer critical perspectives that are highly beneficial to decision makers, planners, and change agents, such as 
our partners, AGP. Despite their limitations, such studies are instrumental in understanding potential future 
developments, guiding decision-making processes, and informing long-term planning and conservation 
strategies. The value of these predictive tools lies in their ability to offer informed scenarios that help 
stakeholders anticipate and address potential challenges.  
 
The FUTURES model, developed by the Center for Geospatial Analytics at North Carolina State University, 
was an especially fitting choice for this project. As an open-source program, it is accessible to anyone 
interested in using it with a wealth of step-by-step tutorials provided by the developers to facilitate learning 
and application. The model's flexibility and versatility make it particularly well-suited for simulating 
projections over large territories like the Platte River Basin. We were able to seamlessly integrate remotely 
sensed data along with other supplemental datasets to create a comprehensive dataset for this project. This 
adaptability is crucial for conducting thorough analyses over extensive areas, ensuring that the model can 
effectively support planning and conservation efforts on a broad scale. 
 
Overall, this study offers significant value to our partners at AGP. Even if they do not run the simulations 
themselves, the ability to use the projections from the two scenarios and present these maps to the 
communities they aim to engage provides a compelling foundation for raising awareness. These visualizations 
can effectively communicate the urgency of enhancing conservation efforts in the Platte River Basin, helping 
to galvanize support and action. 
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7. Glossary 
AGP – Audubon Great Plains 
DEM – Digital Elevation Model 
DNB – Day/Night Band 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
EPA – Environment Protection Agency 
ETM+ – Enhanced Thematic Mapper Plus 
FUTURES – Future Urban Regional Environmental Simulation 
GEE – Google Earth Engine 
NAIP – National Agriculture Imagery Program 
NL – Nighttime Light 
NLCD – National Land Cover Database 
Non-stationary time-series data – parameters in the model with changing statistical properties in time-
series analysis 
OLI – Operational Land Imager 
PRB – Platte River Basin 
Stationary time-series data – parameters used in the model with constant statistical properties in time-series 
analysis 
TM – Thematic Mapper 
UGM – Urban Growth Model 
USFWS – United States Fish and Wildlife Services  
USGS – United States Geological Survey 
VIIRS – Visible Infrared Imaging Radiometer Suite  
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9. Appendices 
 

Appendix A: Maps with projected urban growth in Platte River Basin 

 

Figure A1. Forecasted PRB map for 2050 per Scenario 1 (all wetlands are protected) 
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Figure A2. Forecasted PRB map for 2050 per scenario 2 (no wetlands are protected) 
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Appendix B: Summary Table of projected urban growth within Platte River Basin for both scenarios.  
 

Table B1 
Summary of projected urban growth in PRB per county for each decade of interest (*STATEFP 8 = Colorado, STATEFP 
31 = Nebraska, STATEFP 56 = Wyoming; LULC unit = km2) 

 

State
FP 

County 
Name 

Urban 
Areas 
2021 

Urban 
Areas 
2030 

Urban 
Areas 
2040 

Urban 
Areas 
2050 

Urban 
Growth 
2030 % 

Urban 
Growth 
2040 % 

Urban 
Growth 
2050 % 

8 
Broomfield 

County 
54.9 61.6 66.3 70.1 12.33  20.91  27.76  

8 
Larimer 
County 

399.6 448.8 481.5 509.5 12.32  20.50  27.51  

8 
Adams 
County 

423.8 469.4 499.0 523.6 10.77  17.75  23.56  

8 
Boulder 
County 

250.5 274.1 288.5 300.9 9.44  15.17  20.10  

8 
Jefferson 
County 

438.8 479.0 502.2 520.8 9.16  14.46  18.68  

8 
Weld 

County 
519.2 553.9 584.8 610.1 6.68  12.65  17.51  

8 
Douglas 
County 

328.3 353.8 371.2 384.4 7.75  13.07  17.09  

8 
Arapahoe 
County 

411.4 441.3 459.2 474.0 7.27  11.62  15.23  

8 
El Paso 
County 

609.0 642.1 670.1 692.7 5.45  10.04  13.75  

8 
Gilpin 
County 

19.2 20.7 21.3 21.8 7.87  11.16  13.53  

8 
Chaffee 
County 

56.1 59.4 61.7 63.6 5.80  9.95  13.44  

8 
Lake 

County 
15.6 16.8 17.2 17.5 7.83  10.60  12.41  

8 
Denver 
County 

320.4 339.3 350.1 359.4 5.89  9.28  12.18  

8 
Routt 

County 
67.0 70.8 72.7 74.3 5.73  8.58  10.91  

8 
Summit 
County 

77.5 81.1 83.1 84.7 4.64  7.29  9.38  

8 
Elbert 
County 

152.3 155.7 157.6 158.8 2.25  3.50  4.26  

8 
Clear Creek 

County 
26.1 26.9 27.0 27.0 2.84  3.18  3.19  

8 
Sedgwick 
County 

44.1 44.2 44.4 44.9 0.07  0.51  1.71  

8 Park County 81.8 82.3 82.3 82.3 0.63  0.64  0.64  

8 
Washington 

County 
152.8 153.6 153.6 153.6 0.52  0.52  0.52  

8 
Lincoln 
County 

117.2 117.3 117.5 117.5 0.11  0.26  0.26  
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8 
Jackson 
County 

23.5 23.5 23.6 23.6 - 0.06  0.06  

8 
Grand 
County 

75.1 75.1 75.1 75.1 - - 0.03  

8 
Teller 

County 
58.3 58.3 58.3 58.3 0.01  0.02  0.03  

8 
Morgan 
County 

105.8 105.8 105.8 105.8 - - - 

8 
Logan 
County 

146.8 146.8 146.8 146.8 - - - 

31 
Banner 
County 

49.2 57.5 61.4 64.7 16.84  24.63  31.45  

31 
Sarpy 

County 
185.5 205.3 219.5 231.6 10.67  18.30  24.86  

31 
Lancaster 
County 

324.4 347.1 364.3 380.7 6.99  12.32  17.38  

31 
Douglas 
County 

442.7 470.9 492.4 511.5 6.37  11.21  15.52  

31 
Buffalo 
County 

153.0 162.3 168.8 175.0 6.13  10.38  14.40  

31 Hall County 132.4 138.9 143.6 148.3 4.93  8.51  12.04  

31 
Platte 

County 
108.8 110.6 114.8 120.1 1.60  5.48  10.40  

31 
Saline 

County 
77.7 79.9 81.6 83.8 2.91  5.06  7.87  

31 
Deuel 

County 
39.6 40.4 41.3 42.5 2.23  4.49  7.45  

31 
Cheyenne 
County 

106.9 111.8 113.3 114.8 4.50  5.99  7.32  

31 
Box Butte 

County 
74.4 76.7 77.6 78.8 3.13  4.34  5.90  

31 
Morrill 
County 

63.0 64.4 65.0 66.3 2.20  3.11  5.14  

31 
Adams 
County 

96.9 101.0 101.1 101.1 4.27  4.35  4.35  

31 
Sioux 

County 
35.9 37.4 37.4 37.4 4.19  4.19  4.19  

31 
Kearney 
County 

59.8 60.6 61.3 62.2 1.36  2.53  3.98  

31 
Colfax 
County 

55.0 55.6 56.2 56.9 1.02  2.09  3.46  

31 
Phelps 
County 

68.5 69.6 70.0 70.3 1.60  2.09  2.54  

31 
Gosper 
County 

40.1 40.6 40.7 41.0 1.14  1.35  2.28  

31 
Howard 
County 

59.8 60.4 60.8 61.1 1.11  1.77  2.20  

31 
Dodge 
County 

100.8 101.0 101.1 102.0 0.18  0.32  1.22  
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31 
Hamilton 
County 

71.6 71.8 72.0 72.0 0.21  0.50  0.57  

31 
Seward 
County 

78.8 79.0 79.2 79.2 0.23  0.44  0.47  

31 
Nance 
County 

41.3 41.4 41.4 41.4 0.39  0.39  0.39  

31 Polk County 50.4 50.4 50.4 50.5 - - 0.26  

31 
Arthur 
County 

10.8 10.8 10.8 10.8 - 0.06  0.22  

31 Cass County 90.3 90.5 90.5 90.5 0.18  0.18  0.18  

31 
Logan 
County 

16.2 16.2 16.2 16.2 - - 0.01  

31 
Madison 
County 

100.2 100.2 100.2 100.2    -    0.00  0.00  

31 
Scotts Bluff 

County 
115.7 115.7 115.7 115.7 0.00  0.00  0.00  

31 
Saunders 
County 

105.2 105.2 105.2 105.2 - - 0.00  

31 
Keith 

County 
73.2 73.2 73.2 73.2 - - - 

31 
Kimball 
County 

63.5 63.5 63.5 63.5 - - - 

31 
Custer 
County 

156.5 156.5 156.5 156.5 - - - 

31 
Boone 
County 

68.0 68.0 68.0 68.0 - - - 

31 
McPherson 

County 
10.3 10.3 10.3 10.3 - - - 

31 
Gage 

County 
116.7 116.7 116.7 116.7 

- 
- - 

31 
Dawson 
County 

123.3 123.3 123.3 123.3 - - - 

31 
Antelope 
County 

92.4 92.4 92.4 92.4 - - - 

31 
Lincoln 
County 

171.4 171.4 171.4 171.4 - - - 

31 
Merrick 
County 

64.8 64.8 64.8 64.8 - - - 

31 
Garden 
County 

50.8 50.8 50.8 50.8 
- 

0.00 0.00 

31 
Frontier 
County 

67.4 67.4 67.4 67.4 - 0.00 0.00 

31 
Perkins 
County 

76.5 76.5 76.5 76.5 - 0.00 0.00 

31 
Butler 
County 

72.9 72.9 72.9 72.9 - 0.00 0.00 

56 
Converse 
County 

75.8 87.8 93.5 99.0 15.82  23.31 30.61 

56 
Natrona 
County 

170.2 195.3 208.1 219.8 14.72  22.25 29.13 
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56 
Laramie 
County 

212.6 230.9 242.7 253.3 8.60  14.14 19.12 

56 
Albany 
County 

85.5 92.9 97.1 101.2 8.63  13.47 18.33 

56 
Niobrara 
County 

32.5 33.3 33.9 34.9 2.40  4.33 7.15 

56 
Goshen 
County 

88.4 91.1 91.9 92.9 3.10  3.98 5.15 

56 
Platte 

County 
66.9 68.8 69.3 69.8 2.80  3.49 4.27 

56 
Sublette 
County 

81.7 83.0 83.0 83.0 1.60  1.60 1.60 

56 
Sweetwater 

County 
174.3 176.2 176.7 177.1 1.04  1.34 1.59 

56 
Carbon 
County 

142.3 142.3 142.3 142.3 0.03  0.03 0.03 

56 
Fremont 
County 

183.5 183.5 183.5 183.5 0.00  0.00 0.00 
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Appendix C: Summary of wetland area loss per county for 2030, 2040, 2050 per scenario 2 
 
Table C1 
Wetland loss per county 
*STATEFP: 8 = Colorado, 31 = Nebraska, 56 = Wyoming; Area unit = hectare (1 Ha = 0.01 km2) 
 

ST
AT
EF
P* 

County 
Name 

Wetland 
area 
2021 

Wetland 
Area 
loss 
2030 

Wetland 
Area loss 
2040 

Wetland 
Area 
loss 2050 

% 
Wetland 
Area 
Loss 
2030 

% 
Wetland 
Area 
Loss 
2040 

% 
Wetland 
Area 
Loss 
2050 

8 Adams County 3419.1 140.3  4.1  232.3  6.79  288.13  8.43  

8 Arapahoe 
County 

3515.7 143.9  4.1  236.2  6.72  304.35  8.66  

8 Boulder 
County 

6426.4 168.0  2.6  263.3  4.10  341.47  5.31  

8 Broomfield 
County 

137.3 28.5  20.8  50.7  36.90  71.99  52.44  

8 Chaffee 
County 

6791.6 26.8  0.4  45.2  0.67  59.13  0.87  

8 Clear Creek 
County 

2444.0 1.4  0.1  1.4  0.06  1.44  0.06  

8 Denver 
County 

299.9 76.6  25.5  116.8  38.94  148.03  49.36  

8 Douglas 
County 

4666.1 85.0  1.8  149.9   3.21  185.10  3.97  

8 El Paso 
County 

6851.7 105.2  1.5  204.7  2.99  269.10  3.93  

8 Elbert County 6192.2 10.9  0.2  16.2  0.26  18.85  0.30  

8 Gilpin County 656.8 4.1  0.6  6.6  1.00  7.82  1.19  

8 Grand County 23712.8          -              -              -             -             -             -    

8 Jackson 
County 

50952.5          -              -    0.6           -     0.63           -    

8 Jefferson 
County 

3178.4 170.6  5.4  260.6  8.20  333.10  10.50  

8 Lake County 7456.9 4.3  0.1  5.0  0.07  5.22  0.07  

8 Larimer 
County 

18232.0 195.8  1.1  326.2  1.79  443.72  2.43  

8 Lincoln 
County 

3619.1 0.1           -    0.1           -    0.09           -    

8 Logan County 10645.0          -             -             -             -             -              -    

8 Morgan 
County 

6947.1  0.1           -    0.1            -    0.06           -    

8 Park County 28960.5 2.0  0.0  2.0  0.01  1.98  0.01  

8 Routt County 16536.1 15.5  0.1  28.7  0.17  41.85  0.25  

8 Sedgwick 
County 

3939.1 0.7  0.0  1.9  0.05  4.23  0.11  

8 Summit 
County 

5804.7 28.1  0.5  47.8  0.82  66.87  1.15  
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8 Teller County 3541.6          -             -             -             -              -             -    

8 Washington 
County 

1269.6 0.3  0.0  0.3  0.02  0.27  0.02  

8 Weld County 14328.6 118.0  0.8  198.5  1.39  283.52  1.98  

31 Adams County 1303.3 7.6  0.6  7.6  0.59  7.66  0.59  

31 Antelope 
County 

5766.1 - - - - - - 

31 Arthur County 5190.6 - - - - - - 

31 Banner 
County 

320.6 0.8  0.3  0.8  0.25  1.17  0.36  

31 Boone County 3023.9 - -  -  -  -  - 

31 Box Butte 
County 

2071.4  2.5   0.1  2.8  0.13  2.79  0.13  

31 Buffalo 
County 

12151.7 71.4  0.6  129.4  1.06  179.08  1.47  

31 Butler County 1392.0 - - - - - - 

31 Cass County 1932.2 0.4  0.0  0.5  0.02  0.45  0.02  

31 Cheyenne 
County 

707.0 5.2  0.7  7.4  1.04  8.01  1.13  

31 Colfax County 1741.2 0.3  0.0  0.4  0.03  2.52  0.14  

31 Custer County 7975.9 - - - - - - 

31 Dawson 
County 

10606.8 - - - - - - 

31 Deuel County 1159.1 8.9  0.8  14.6  1.26  26.82  2.31  

31 Dodge County 4376.1 0.9  0.0  4.0  0.09  6.48  0.15  

31 Douglas 
County 

2426.4 130.8  5.4  223.9  9.23  303.86  12.52  

31 Frontier 
County 

3422.6 - - - - - - 

31 Gage County 339.0 - - - - - - 

31 Garden 
County 

16484.6 - - - - - - 

31 Gosper 
County 

3301.2 2.6  0.1  2.6  0.08  2.97  0.09  

31 Hall County 9173.7 42.4  0.5  84.2  0.92  118.61   1.29  

31 Hamilton 
County 

2450.3  0.1  - 0.1           -  0.09  - 

 

31 Howard 
County 

5342.6 5.7  0.1  8.9  0.17  11.61  0.22  

31 Kearney 
County 

1822.8 0.9  0.1  2.7  0.15  2.90  0.16  

31 Keith County 9557.3 - - - - - - 

31 Kimball 
County 

699.5 - - - - - - 

31 Lancaster 
County 

1892.3 39.4  2.1  56.2  2.97  68.76  3.63  
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31 Lincoln 
County 

21186.3 - - - - - - 

31 Logan County 5753.0 - - - - - - 

31 Madison 
County 

2381.5 - - - - - - 

31 McPherson 
County 

2737.4 - - - - - - 

31 Merrick 
County 

10172.8 0.0           - 0.0           -    0.00           -    

31 Morrill County 13624.1 15.3  0.1  19.5  0.14  30.24  0.22  

31 Nance County 6704.1 3.2  0.1  3.2  0.05  3.24  0.05  

31 Perkins 
County 

360.3 - - - - - - 

31 Phelps County 2988.8 7.4  0.3  7.8  0.26  9.63  0.32  

31 Platte County 4681.4 6.1  0.1  17.1  0.36  35.68  0.76  

31 Polk County 1839.3 - -  0.0           -    0.68  0.04  

31 Saline County 403.8 0.4  0.1  1.0  0.25  1.89  0.47  

31 Sarpy County 2556.3 88.7  3.5  137.9  5.39  188.87  7.39  

31 Saunders 
County 

2615.3 0.0         -                0.1            -  0.11           -  

31 Scotts Bluff 
County 

6163.9 -   - - - - - 

31 Seward 
County 

832.2 0.1  0.0  0.2  0.02  0.18   0.02  

31 Sioux County 3097.0 2.1  0.1  2.1  0.07  2.07  0.07  

56 Albany 
County 

46434.2 49.8  0.1  75.3  0.16  95.40  0.21  

56 Carbon 
County 

44354.3 0.2  -    0.2           -    0.36        -    

56 Converse 
County 

13993.3 16.6  0.1  26.2  0.19  37.35  0.27  

56 Fremont 
County 

53162.6 - - - - - - 

56 Goshen 
County 

7938.9 11.1  0.1  15.1  0.19  18.99  0.24  

56 Laramie 
County 

9632.5 26.3  0.3  43.3  0.45  62.37  0.65  

56 Natrona 
County 

13980.7 92.3  0.7  138.7  0.99  173.88  1.24  

56 Niobrara 
County 

8297.7 1.5  0.0  3.5  0.04  5.13  0.06  

56 Platte County 14417.5 15.7  0.1  17.6  0.12  21.87  0.15  

56 Sublette 
County 

71583.5 8.7  0.0  8.7  0.01  8.73  0.01  

56 Sweetwater 
County 

13307.9 2.3  0.0  3.8  0.03  4.23  0.03 

 


