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1. Abstract  
Within the intermountain west, monitoring vegetation fuel loads is a major component of wildland fire 
management efforts. To address this concern, we partnered with the U.S. Forest Service to inform the agency 
which forested areas should be prioritized for prescribed burning and fuel reduction near human 
communities in the Bridger-Teton National Forest, Wyoming. We computed burn severity maps, fuel load 
maps, and a tutorial document to identify forest impact trends and provide the partner with the tools to 
replicate project methods for use in other wildfire crisis strategy sites. These end products were made using 
two NASA Earth observations: Landsat 8 Operational Land Imager and Shuttle Radar Topography Mission. 
Based on our random forest analysis, our maps identified 998 acres within the Wildland Urban Interface that 
are predicted to have high fuel loading and high burn severity within the Bridger-Teton National Forest. 
Forested areas closer to heavily populated areas such as Jackson, Kelly, Moran, New Forks Lake, and Star 
Valley Ranch should be prioritized for fuel reduction. However, our random forest model analysis was limited 
to using vegetation and topographical indices with no field data for model validation. Therefore, future 
studies should use field data for model validation to improve model accuracy and additionally incorporate 
Global Ecosystem Dynamics Investigation data into models to create better predictions of forested areas with 
high fuel load and high burn severity.   
 
Key Terms 
Remote Sensing, Landsat, Fuel Loads, Burn Severity, Wildland Urban Interface, Bridger-Teton National 
Forest 
 

2. Introduction  
2.1 Background Information 
As current climatic conditions in the Rocky Mountains continue to warm (Shukla et al., 2022), there is an 
increased probability of unprecedented fire cycles extending beyond the historic fire range of the last 
millennia (Clark-Wolf et al., 2023). Higher severity fires increase rates of vegetation mortality and total area 
burned, threatening not only wildlife habitat, hydrological processes, and ecosystem services (Morton et al., 
2003) but also human communities in wildland urban interfaces (WUI; Radeloff et al., 2005). Since the 1990s, 
the number of homes within wildfire perimeters has doubled in the conterminous United States (Radeloff et 
al., 2023). As urban development grows and expands, more structures are at risk of burning in WUIs, defined 
as “the line, area, or zone where structures and other human development meet or intermingle with 
undeveloped wildland or vegetative fuels” (Department of Agriculture & Department of Interior, 2001).  
 
According to Radeloff et al. (2023), more than 60% of houses in Wyoming exist within a WUI. Yet, homes 
surrounded by rangeland and undeveloped land face increased wildland fire threats bolstered by high fuel 
loads. While it is increasingly critical for federal agencies such as the U.S. Forest Service (USFS) to determine 
which rangeland high fuel load areas to focus on for fuel reduction and crisis planning efforts. Tools that 
remotely sense wildland fires, vegetation conditions, and fuel density can improve forest management 
decisions, giving land managers an opportunity to reduce the impacts of fire (Hoffrén et al., 2023, Stefanidou 
et al., 2020; Furniss et al., 2020; Scott et al., 2013). One of the national forests that the USFS is interested in 
applying remote sensing tools for fuel reduction is the Bridger-Teton National Forest (BTNF; Figure 1) due 
to its potential for management comparison to other national forests within USFS Region 4 (a.k.a. 
Intermountain Region). The BTNF encompasses 3.4 million acres of undeveloped land with 13 or more 
WUIs, buttresses two national parks, and comprises three dedicated wilderness areas, creating one of the 
largest contiguous wilderness zones in the United States (U.S. Department of Agriculture, n.d.). The most 
common forested vegetation cover types found within the BTNF is subalpine fir, Engelmann spruce, and 
Douglas-fir forests which comprises 21% of the area (LANDFIRE, 2016). Forested areas are conducive to 
larger fuel loads and fuel bed bulk density that drive landscape-fire connectivity (Miller and Urban 2000, 
Deeming et al., 1972). Scott et al. (2012) simulated the likelihood of prescribed fires in the BTNF reaching 
Jackson, Wyoming under “let it burn” or active suppression conditions. Simulated fires managed with 
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prescribed burns resulted in less severe, smaller, and shorter duration fires that were less likely to reach WUI 
areas in comparison to unmanaged forests (Scott et al., 2012). Thus, an updated assessment of which forested 
areas are to be currently prioritized for fuel reduction was needed. 
 

  
 

Figure 1. The Bridger-Teton National Forest. Fuel load and fire severity trends for the 2018 wildland fires 
were analyzed to predict fuel load and fire severity trends in 2023. 
 
2.2 Project Partner & Objectives 
We partnered with the USFS Remote Sensing Manager in USFS Region 4 to identify the greatest at-risk areas 
to wildfire within the BTNF. This project aligns with the USFS's goals of mitigating fire risk for communities 
and fostering fire-resistant forests. The USFS traditionally employs prescribed burning and forest thinning at 
various scales, particularly near WUIs, to reduce fuel loads. In one study led by the USFS, thinning within 12 
sites led to overall tree density decrease by greater than 60%, reducing susceptibility to crown fires (Harrod, 
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2009). Through this collaboration, we identified at-risk WUI zones for fuel reduction efforts to inform the 
USFS’s forest management decision-making. Our project completed the following three objectives: 1) map 
areas with potential for high-severity fires and high fuel loading, 2) inform the partner of current wildfire risk 
by delineating areas that should be prioritized for fuel reduction to address community safety and 3) create a 
tutorial document that showcases project methodology to replicate project methods to other wildfire crisis 
strategy sites that the partner would like to address.  
 

3. Methodology 
3.1 Data Acquisition 
We acquired all satellite data from the USGS Landsat 8 Operational Land Imager (OLI) Collection 2 Tier 1 
Level 2 and NASA Shuttle Radar Topography Mission (SRTM) sensors at the 30 m resolution due to the 
availability of this spatial resolution (Table 1). Because a greater proportion of BTNF burned in 2018 relative 
to other years in the past 10 years, we collected imagery across three temporal periods to analyze fuel and fire 
severity trends from 2017-2019 and predict fuel and fire severity trends in 2023 for random forest models 
(Table 2).  
 
Table 1 
Remote sensing variables 

Data 
Category 

Data Product Variable Time Period 

Spectral 
Band Indices 

Landsat 8 OLI 
Collection 2 Tier 116-
Day 30 m 

Normalized Difference Vegetation Index, 
Normalized Difference Moisture Index, 
and differenced Normalized Burn Ratio 

Pre-Fire, Post-
Fire, and Current 

Tasseled Cap 
Indices 

Landsat 8 OLI 
Collection 2 Tier 1 Top 
of Atmosphere 16-Day 
30 m 

Brightness, Wetness, Greenness Pre-Fire, Post-
Fire, and Current 

Topography NASA SRTM 11-Day 
30 m 

Elevation, Slope, Aspect Derived from 
SRTM 2007 

 
Table 2 
Temporal periods for data acquisition in regards to overall study period for the project 

Time Period Dates Rationale 

Pre-fire in 
study period 

June 1 - October 31, 2017 and 
June 1 – July 31, 2018 

Used to train our random forest models. 

Post-fire in 
study period 

August 1 - October 31, 2018 and 
June 1 - October 31, 2019 

Used to calculate the differenced normalized burn 
ratio.  

Current in 
study period 

June 1 - October 31, 2023 Used to predict current fuel load and current fire 
severity conditions for random forest models.  

 
3.1.1 Ancillary Datasets 
We used four ancillary datasets for this project (Table 3). We downloaded a vegetation cover dataset specific 
to the USFS Intermountain West Region 4 called the Vegetation Classification, Mapping, and Quantitative 
Inventory (VCMQ; Nelson et al., 2015). VCMQ provided estimates for both shrub and tree canopy cover, 
ranging from 0-100%. Additionally, we used VCMQ tree size class data that was grouped as non-forested, 
size class 2 (<5” diameter breast height), size class 3 (5-9.9” diameter breast height), size class 4 (10-19.9” 
diameter breast height), size class 5 (20-29.9” diameter breast height), and size class 6 (30+” diameter breast 
height). The second ancillary dataset was LANDFIRE, where we obtained canopy height (m) for 
aboveground vegetation. Canopy height was categorized as non-forest, low canopy (0-10m), medium canopy 
(10-25m), and tall canopy (25-50m) (LANDFIRE, 2016). We downloaded both the National USFS Final Fire 
Perimeters dataset and WUIs from the USDA Forest Service Geodata Clearinghouse (United States 
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Geological Survey et al., 2021). We used the fire perimeter dataset to identify all fires that occurred in 2018. 
The WUI highlighted developed areas close to wildland vegetation and at high fire risk as of 2020. 
 
Table 3 
Data products 

Data Product Variable Spatial 
Resolution 

Time Period 

Vegetation 
Classification, Mapping, 
and Quantitative 
Inventory (VCMQ) 

Canopy Cover (%), 
Tree Size Classes (Diameter 
at Breast Height) 

30 m Derived 2014 

LANDFIRE Canopy Height (m) 30 m Derived 2014 

Wildland Urban 
Interface  

Area of Developed Areas 
that Overlap with Wildland 
Vegetation 

N/A Derived 2020 

National USFS Final 
Fire Perimeter 

Perimeters of Fires that were 
10 Acres or Greater in Size 

N/A 2018 

 
3.2 Data Processing 
To build our random forest models and create our predicted raster datasets for fuel load and burn severity, 
we first needed to process satellite data and create the variables that would be included in the models. We 
processed image rasters downloaded directly as image collections in Google Earth Engine (Gorelick et al., 
2017). We filtered and clipped images to study area shape files as well as filtered by the pre-fire, post-fire, and 
current temporal ranges. We used functions and formulas to calculate vegetation indices, Tasseled Cap 
transformations, and topographic variables through Google Earth Engine, as further explained below. After 
creating these variables, we exported the images as rasters to be imported by other programs such as ArcGIS 
Pro 3.2.1.  
 
3.2.1 Vegetation Indices 
We processed vegetation indices across specific temporal ranges categorized as pre-fire and post-fire. For the 
pre-fire period, we selected the time frames of June 1 to October 31, 2017 and June 1 to October 31, 2018. 
The post-fire periods chosen were August 1 to October 31, 2018, and June 1 to October 31, 2019. These 
temporal selections were limited to the months of June to October since they best align with when the fire 
season occurs. 
 
We calculated a total of three vegetation indices. First, the Normalized Difference Vegetation Index (NDVI) 
indicates the density and health of vegetation where lower values could indicate higher fuel loads, given more 
dead plant material that could burn (Rouse et al., 1974). Second, the Normalized Difference Moisture Index 
(NDMI) indicates moisture content where lower values represent drier conditions and therefore more 
likelihood of areas to burn (Wilson and Sader, 2022). Finally, the difference normalized burn ratio (dNBR) is 
the difference between normalized burn ratio values from pre-fire to post-fire where higher values indicate a 
higher burn severity (Parks et al., 2018; Key et al., 2006). The equations for how we calculated each variable 
are listed below (Equations 1 – 4) where NIR corresponds to the near infrared band, SWIR1 and SWIR2 
correspond to the short-wave infrared band 1 and 2 respectively, and RED corresponds to the red band.  
 
NDVI = (NIR – RED) / (NIR + RED)           Eq. 1 
 
NDMI = (NIR – SWIR1) / (NIR + SWIR1)          Eq. 2 
 
dNBR = (pre-fire NBR) – (post-fire NBR)           Eq. 3 
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    where NBR = (NIR – SWIR2) / (NIR + SWIR2)                                           Eq. 4    
 
3.2.2 Tasseled Cap Indices 
To be able to differentiate soil from vegetation, vegetation from water, and soil from water, we calculated 
three Tasseled Cap Indices. These indices include brightness, greenness, and wetness and represent 
information about soil, vegetation, and moisture content, respectively. We first extracted Landsat images 
from the USGS Landsat 8 Collection 2 Tier 1 top-of-atmosphere (TOA) across the same temporal periods as 
we did for the vegetation indices. Because the coefficients used in the Tasseled Cap transformation are 
specific to the spectral characteristics of the satellite imagery being processed, we used a series of 
mathematical operations and coefficients as determined by Baig and others (2014, page 429) to derive these 
new spectral indices. Below are the coefficients used to derive the tasseled cap indices (Table 4). The 
coefficients of each band were added across all bands, with the sum of the bands equaling the new index. 
 
Table 4 
Tasseled cap indices 

Landsat 8 
TOA 

Band 2 
(Blue) 

Band 3 
(Green) 

Band 4 
(Red) 

Band 5 
(NIR) 

Band 6 
(SWIR1) 

Band 7 
(SWIR2) 

Brightness 0.3029 0.2786 0.4733 0.5599 0.508 0.1872 

Greenness -0.29412 -0.243 -0.5424 0.7276 0.0713 -0.1608 

Wetness 0.1511 0.1973 0.3283 0.3407 -0.7117 -0.4559 

 
3.2.3 Topographic Variables 
To create our topographic variables for the Bridger-Teton National Forest, we first obtained a 30-meter 
Digital Elevational Model (DEM) from NASA SRTM in Google Earth Engine. The DEM provided us with 
an elevation layer for our study area. Using the terrain function, we then processed the DEM to create an 
aspect and slope layer (Farr et al., 2007).  
 
3.2.4 Fuel Load and Burn Severity  
We used a combination of different categories of canopy height, canopy cover, and tree size class data to 
determine fuel load levels across the BTNF. We first created a new fuel load field within the attribute table 
for each vegetation metric (canopy cover, canopy height, and tree size class). We used the select by attributes 
tool to populate the fuel load field using the categories specified below in ArcGIS Pro (Table 5). Then, we 
used the merge tool to spatially join all three vegetation layers and create a final fuel load layer that identified 
low, medium, and high fuel load areas in accordance with all three vegetation variables. We discarded any 
mismatches in fuel load characterization across the three vegetation variables. For burn severity, we 
categorized dNBR values into five burn severity categories (Table 6), using methods described by Rozario et 
al., (2018).   
 
Table 5 
Categorization of fuel load levels 

Fuel Load  Canopy Cover (%) Canopy Height 
(Meters) 

Tree Size Class (Diameter 
at Breast Height) 

Low No canopy cover 
Shrub: 10-24 
Tree: 10-20 

Non-forest 
 

Non-forest 

Medium Tree: 20-50 25 - 50 20-29.9” 
30” + 

High Shrub: 25-100 
Tree: 50-100 

0 - 10 
10 - 25 

<5” 
5-9.9” 

10-19.9” 
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Table 6 
Categorization of burn severity levels 

Severity Level dNBR Range 

Enhanced Growth < -0.1 

Unburned -0.1 to +0.1 

Low Severity +0.1 to +0.27 

Moderate Severity +0.27 to +0.66 

High Severity > +0.66 

 
3.3 Data Analysis 
We computed two supervised classifications with a machine learning random forest model in RStudio (ver. 
4.3.2) using the “randomForest” package (Liaw & Wiener, 2002). We designed these random forest models to 
predict fuel load and burn severity separately based on the 2018 fires. For both random forest models, we 
chose the following predictor variables from remotely sensed climatic and topographic metrics described 
above: elevation (m), slope (degrees), aspect (degrees), NDVI, NDMI, brightness, greenness, and wetness. 
These predictor variables were chosen based on literature review of which variables most affect fire behavior 
(Hoffrén et al., 2023; Myroniuk et al., 2023). However, we did not look into correlation among predictor 
variables. Our response variable for the fuel load random forest model was fuel load, which was determined 
by estimates of canopy cover (%), canopy height (m), and tree size (m) as described above. Our response 
variable for the fire severity random forest model was dNBR.  
 
We utilized 30% of our observation data to train each random forest model where the remaining 70% of data 
was used to validate each model with a standardized seed set of 123 samples and 500 simulations to ensure 
that all possible combinations of different predictor variables were used in assessing which variable 
combination best predicted the response variable. We chose the final model based on the variables that 
optimized the random forest model predictive power using the R package “raster” (Hijmans & van Etten, 
2012). 
 

4. Results & Discussion  
From the final models, we created a predicted fuel load and predicted burn severity raster layer (Figure 2) 
using 2023 predictor variables. From the predicted fuel load and burn severity raster layers, we overlayed 
known WUI areas (Figures 3 and 4). These overlapping high burn severity and moderate fuel load areas have 
been highlighted (Figure 5) as areas to prioritize fuel reduction as they pose the greatest fire risk to 
communities. 
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Figure 2. Predicted fuel load (left), burn severity (center), and overlay of both fuel load and burn severity 
(right) in the Bridger-Teton National Forest. 
 

 
Figure 3. Predicted fuel loads in WUIs near Jackson, Wyoming and New Forks Lake (Cora, Wyoming). 
 

 
Figure 4. Predicted burn severity in WUIs near Jackson, Wyoming and New Forks Lake (Cora, Wyoming). 
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Figure 5. Predicted burn severity and fuel loads in WUI near Jackson, Wyoming within the Bridger-Teton 
National Forest. 
 
4.1 Analysis of Results 
The following predictors: elevation (m), NDVI, Brightness, Wetness, Greenness had the highest predictive 
power in the fuel load random forest model, where elevation (m), aspect (degrees), and Brightness drove the 
burn severity model predictive power. We calculated an error rate for the fuel load random forest model, 
where 12% of low fuel was misclassified as high fuel and 7% of high fuels were misclassified as low fuels 
(Table 7). In the burn severity model, we calculated classification error, which averaged >50% for unburned, 
low, and moderate burn severity, meaning that over 50% of the data was misclassified or placed in the 
incorrect category (Table 8).   
 
Our random forest models trained on random point data within our study area and could not be validated 
with field data. We anticipate that with field data, fuel load could be re-classified to be more accurate within 
fine to coarse fuels in current field conditions that could therefore improve model predictive power. 
Additionally, as we utilized top of atmosphere passive remote sensing tools, our models relied heavily on 
canopy fuels and coarser dead and live fuel classes, as determined by diameter at breast height tree bole 
diameters of > 30cm. With a lack of understory remote detection, medium to fine fuels from grasses, 
herbaceous vegetation, shrubs, pine needles, duff, etc. were under-represented in our models while coarse 
fuels were possibly over-represented. Though, it is difficult to determine understory fuels as indicated 
throughout the scientific literature (Saatchi et al., 2007; D’Este et al., 2021). Fuel load is indicative of live and 
dead vegetation that greatly impacts fire behavior in forested systems as well as throughout WUI. With the 
lack of model fit in the burn severity and fuel load models, it is difficult to validate predictive fire behavior 
and community risks in this study. However, it is feasible for these models to be improved and to be utilized 
as viable tools for future management decisions and community risk assessments. 
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Table 7 
Confusion matrix for predicted fuel load 

Predicted Fuel 
Load 

Low Medium High Class Error 

Low 96 0 13 0.119 

Medium 0 0 0 N/A 

High 5 0 63 0.074 

 
Table 8 
Confusion matrix for predicted burn severity 

 Enhanced 
Regrowth 

Unburned Low Severity Moderate 
Severity 

High 
Severity 

Class Error 

Enhanced 
Regrowth 

0 0 1 0 0 1.00 

Unburned 0 15 12 8 0 0.571 

Low Severity 0 12 14 5 0 0.548 

Moderate 
Severity 

0 5 5 11 1 0.500 

High Severity 0 0 0 1 0 1.00  

 
After overlaying the predicted fuel map and predicted burn severity maps, we calculated acres of forested 
areas within the WUI to inform the U.S. Forest Service of total areas of each fuel (Table 9) and burn severity 
category (Table 10). As identified by the fuel load and burn severity within the WUI boundaries (Table 11), 
there is approximately 74,376 acres that have both low fuels and low burn severity. This is roughly 39% of the 
total area within the WUI. In contrast, the medium and high area for both fuel load and severity are around 
1% of the total area within the WUI. Therefore, when looking at areas that have both high fuel loads and 
potential for high severity fires, a relatively small proportion of the WUI (1%) needs to be immediately 
addressed via fuel reduction and should consider employing fireproofing practices. However, considering 
project limitations as discussed further below, our project likely underestimated total forested areas with high 
fuel load and high burn severity. 
 
Table 9 
Acreage of fuel load in the WUI 

Fuel Load Low Medium High 

Acres in WUI & % 
of Area 

95302 (50%) <1 (1%) 95413 (50%) 

 
Table 10 
Acreage of burn severity categories in the WUI 

Burn 
Severity 
Category 

Enhanced 
Regrowth 

Unburned Low Severity Medium Severity High Severity 

Acres in 
WUI & % of 
Area 

23 (<1%) 26823 
(14%) 

103163 (54%) 59695 (31%) 1014 (1%) 

 
Table 11 
Acreage of burn severity and fuel load categories combined in the WUI 

Fuel & Burn Severity 
Category 

Low Fuel & Low 
Burn  

Medium Fuel & Medium 
Burn 

High Fuel & High Burn 
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Acres in WUI & % of 
Area 

74376 (39%) <1 (<1%) 998 (1%) 

 
4.2 Feasibility for Partner Use 
We encountered several limitations during this project. Our fuel and burn maps used decade-old data and 
thus held less than desired current information. Also, our models were based on less relevant vegetation 
metrics. We were unable to access field data to “ground-truth” our models and verify field conditions. 
Additionally, we did not find it feasible to utilize ISS GEDI data for the temporal range of this study. Our 
project found that the partner could utilize several of the methods we employed, and to consider additional 
tools alongside our methodology to create high accuracy predictive models if these challenges are remedied in 
the future.  
 
For example, we manipulated and processed preliminary GEDI data and found that when temporal 
resolution is broad, data coverage is sufficient in the study area. While narrow temporal ranges limit point 
data and coverage, it is feasible to utilize high-resolution GEDI data when temporal ranges focus on data 
from December 2018 onward. As it is likely that wildfires will occur in the future, pairing GEDI with 
vegetation indices and topographic data to investigate landscape conditions prior to, during, and following 
wildland fire could be substantially more predictive of fuel loads and burn severity (Myroniuk et al., 2023). It 
would be beneficial to inventory in part and validate field conditions to better simulate and predict fuel 
classes that validate decision tree methods like random forest models, as this has been a common strategy in 
other Intermountain West wildland fire studies (Shendryk, 2022). 
 
4.3 Future Recommendations 
To better integrate our methods into our partner’s future projects, we recommend taking advantage of the 
finer spatial resolution of GEDI (25 m) as compared to Landsat’s resolution (30 m). While we had a time 
constraint of when GEDI became active, future studies can also take full advantage of extracting canopy 
cover, terrain elevation, and relative tree height metrics from GEDI for both fine and large fuel loads (Lang 
et al., 2022). Additionally, our partner could investigate vegetation indices as well which when used in 
conjunction with GEDI, we think would result in higher power models than we generated in this study.  
 

5. Conclusions 
We identified 998 acres that have high fuel loading areas and potential for high-severity fires within the WUI 
based on our random forest analysis. As the WUI is expected to expand further into Bridger-Teton National 
Forest, we recommended that forested areas closer to populated areas are prioritized for fuel reduction to 
address community concerns. These areas include Jackson, Kelly, Moran, New Forks Lake, and Star Valley 
Ranch. Fuel reduction activities can consist of prescribed burning or mechanical thinning. For areas outside 
the WUI but still highlighted with high fuel and potential for high severity fires, we recommend less pressing 
management activities such as timber harvests when resources are available. Finally, with our tutorial 
document, our partner can now use the same methodology to repeat this project in other national forests 
prone to wildfires. 
 
When considering the feasibility of this study, there were several limitations. Firstly, with no field data to 
validate our random forest and verify our fuel loads, the accuracy of our models is not high. This also led to 
there being a low representation of medium fuel loads for the model to be trained on. As a result, our random 
forest model is not able to correctly identify medium fuel loads and instead categorized fuel loads either low 
or high. Another limitation to our datasets is incorporating surface fuels, which can strongly determine fire 
behavior and patterns. As GEDI was not available until 2019 and our analysis focused on 2018 fires, we 
recommend future projects leverage remote sensing data like from GEDI to capture vital vegetation 
characteristics, including canopy height and biomass density, enhancing the accuracy of fuel load assessments. 
Furthermore, using continuous vegetation metrics data instead of binned datasets for canopy cover, height, 
and tree size class would likely yield more precise results.  
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7. Glossary 
Diameter at Breast Height – the standard method for measuring the diameter of a standing tree trunk at 
approximately 1.3m above ground-level 
Differenced Normalized Burn Ratio (dNBR) – The difference between pre-fire and post-fire burn 
severity that indicated high damage areas by fires. The normalized burn ratio is calculated with the near-
infrared and shortwave-infrared bands. 
Earth Observations – Satellites and sensors that collect information about the Earth’s physical, chemical, 
and biological systems over space and time 
Fire Behavior – how a fire acts on the landscape as impacted by weather, wind, long-term climate, and fuel 
loads leading to release of energy (intensity) and vegetation damage and/or mortality  
Fuel Load – the combustible material in an area e.g. pine needles, standing dead trees, logs, snags, homes, 
etc. 
Google Earth Engine – is a cloud-based data pipeline service that provides direct access to satellite imagery 
and geospatial datasets while also providing direct coding interface 
Intermountain West – a geographic region in the United States located between the Rocky Mountains in the 
East and the Cascade and Sierra Nevada Mountains in the West 
Landsat 8 Operational Land Imager (OLI) and Top-Of-Atmosphere (TOA) Sensors – the OLI sensor 
was launched in April 2013 and is a type of “push-broom” scanner that takes images of Earth’s surface and 
measures radiation from several spectral bands such as ocean aerosols, blue, green, and near infrared bands at 
a 15m to 30m resolution. The TOA sensor is a part of the OLI sensor which collects additional spectral 
bands 
Normalized Difference Moisture Index (NDMI) – a metric used to detect the moisture within vegetation 
from the near-infrared and short-wave infrared bands  
Normalized Difference Vegetation Index (NDVI) – a metric used to detect vegetation photosynthesis 
and therefore vegetation health and density from the red and near-infrared bands 
R Studio (R) – open-source integrated development environment (IDE) for the programming language, R 
for statistical analysis and graphical interpretation 
Random Forest – a supervised machine learning technique that operates by constructing decision trees 
based on training and validation data for separating or grouping data variables for further model classification 
Shuttle Radar Topography Mission (SRTM) – and international satellite mission that obtained high-
resolution digital elevation models (Earth surface elevation) from an eleven-day mission in 2000 
Spatial Resolution – the pixel size or the smallest object that can be resolved by a remote sensor or imaging 
device  
Tasseled Cap Transformation – the transformation of spatial information from satellite data into three 
distinct spectral indicators: brightness, greenness, and wetness 
Topography – the surface features of Earth’s surface, including elevation, aspect, and slope 
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Vegetation Classification, Mapping, and Quantitative Inventory (VCMQ) – US Forest Service Project 
through Region 4 to inventory and map shrub cover, tree cover, and vegetation health assessments from 12 
Intermountain Region Forests, including the Bridger-Teton National Forest 
Wildland Urban Interface (WUI) – the line, area, or zone where structures and other human development 
meet or intermingle with undeveloped wildland or vegetative fuels (Department of Agriculture & Department 
of Interior 2001). 
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