



# NORTHERN ROCKIES ECOLOGICAL CONSERVATION

Leveraging Earth Observations to Monitor and Predict Populations of Federally Threatened Whitebark Pine (*Pinus albicaulis*) Across the Intermountain West

Hannah Rogers

A H M Mainul Islam

Dustin Corbridge

Josh Carrell



Idaho — Pocatello | Summer 2024

#### **Meet The Team**









#### Background

Whitebark pine is a Keystone and Foundational Species









Image Credits: (left to right) Stephen Pavlov; Gregory "Slobirdr" Smith; Diane Renkin/Yellowstone National Park; Cephas

#### **Partners**

USDA US Forest Service, Region 1

National Park Service, Yellowstone Inventory and Monitoring Network

Whitebark Pine Ecosystem Foundation

US Fish & Wildlife Service, Montana Ecological Services Field Office

Bureau of Land Management, Salmon Idaho Field Office

US Fish & Wildlife Service, Wyoming Ecological Services Field Office



# **Community Concerns**

Whitebark pine is a Threatened Keystone Species in the Rocky Mountain West







Image Credits: (left to right) USDA Forest Service; National Park Service/Shanahan; Glacier National Park Service

# **Objectives**

Investigate Spectral Signatures

Create Distribution Models

3 Generate Habitat Suitability Model

Develop Accessibility Model



# Study Area & Period



#### **Earth Observations**

Landsat 9
Operational Land
Imager
(OLI - 2)

Sentinel- 2
Multispectral Imagery
Instrument
(MSI)



# Data Acquisition

| Satellite/Sensor                                   | Resolution                                                    |
|----------------------------------------------------|---------------------------------------------------------------|
| Landsat 9<br>Operational Land<br>Imager (OLI – 2)  | Temporal resolution: 16 days Spatial resolution: 30m          |
| Sentinel-2<br>Multispectral<br>Instrument<br>(MSI) | Temporal resolution: 5 days Spatial resolution: 10m, 20m, 60m |



#### **Methods: Habitat Suitability**

#### **Predictor Variables**

Elevation

Percent Canopy Cover

Slope

Landcover

**Aspect** 

Landsat NDVI



Image Credit: Kait Lemon

# Methods: Habitat Suitability Modeling



#### Results: Habitat Suitability Model

#### Performance Metrics

- Sensitivity: 0.719 (ability to model suitable locations)
- Specificity: 0.689 (ability to model non-suitable locations)
- o Area Under the Curve (AUC): 0.754 (overall model performance Good!)

B)





#### Methods: Accessibility Model

Habitat Suitability Model <60% Occurrence Probability

Trail & Roads Data

Clip Relevant Roads & Trails

Calculate 1km and 3km Buffer



Image Credit: Kait Lemon

#### Results: Accessibility Model

- Whitebark pine is difficult to access because of its remote high elevation habitat
- To prioritize areas of conservation, we used trail, road and land ownership, allowing land managers to prioritize areas based on accessibility
- Shows high probability areas for whitebark pine and their distance from trails and roads



Basemap Credit: Esri, TomTom, Gardmin, FAO, NOAA, USGS, OpenStreetMap contributors, and the GIS User Community

#### **Ground Truth Data Collection**

Study Area -Bonneville Peak

**ArcGIS Field Maps** 

**Trimble** 

**Dichotomous Key** 



Basemap: Esri, USDA FSA, Source: Esri, MAXAR, Earthstar Geographics, and the GIS User Community, Esri Community Maps Contributors, OpenStreetMap, Microsoft, Esri, TomTom. Garmin, SafeGraph, Geotechnologies, Inc., METI/NASA, USGS, Bureau of Land Management, EPA, NPS, US Census, Bureau, USDA, USFWS.

# Spectral Signature Image & Data Processing

#### **Data Acquisition**

Sentinel-2 Image



Google Earth
Engine

#### Image Preprocessing

Temporal Filtering

Spatial Filtering

Cloud Masking

Median of Image Collection

Ground Truth GPS WBP Extract
Spectral
Signature



#### Spectral Signature Analysis

- The team collected whitebark pine and limber pine coordinates from the field
- Sentinel-2 MSI derived spectral signatures indicates that average spectral reflectance of whitebark pine is higher than limber pine in Visible (VIS) and Short-wave Infrared (SWIR) region.



# **Preliminary Distribution Model**



Image left and image rirght - Basemap: Esri, USDA FSA, Source: Esri, MAXAR, Earthstar Geographics, and the GIS User Community, Esri Community Maps Contributors, OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, Geotechnologies, Inc, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, US Census, Bureau, USDA, USFWS.

**Preliminary Visual Validation** 

Spring Mountain Canyon -Idaho

Caribou-Targhee National Forest





Basemap: Esri, USDA FSA, Source: Esri, MAXAR, Earthstar Geographics, and the GIS User Community, Esri Community Maps Contributors, OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, Geotechnologies, Inc, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, US Census, Bureau, USDA, USFWS.

#### **Errors and Uncertainty**

- We did not have enough accurate whitebark pine coordinates to validate the model
- To ensure the distribution model's accuracy and achieve higher classification precision, we need a substantial number of ground truth observations per species for statistical validation



Image Credit: Hannah Rogers

# Limitations & Future Work: Spectral Signature

- The differences between spectral signatures of whitebark pine and limber pine shows the feasibility of classifying tree species
- Finer spatial and temporal resolution of Maxar Worldview (~1m; 1.1 day) provide accurate species classification than Sentinel-2 MSI (10m - 60 m; 5 days) using spectral signatures. Hence, extensive use of Maxar worldview should be incorporated in validation approach



#### Limitations: Habitat Suitability

- Models have bias
  - Additional models may provide insight into habitat suitability
- Habitat suitability models are meant to be updated
  - Additional occurrence records
  - Additional predictor variables
- Habitat suitability models are meant to be expanded
  - They can predict across landscapes including locations where whitebark pine occurrence is unknown



Image Credit: Hannah Rogers

#### Conclusions

- The differences between spectral signatures of whitebark pine and limber pine shows the feasibility of classifying tree species
- Additional models such as Random Forest, Gradient Boosting Machine, etc., working in conjunction with the generalized linear model may provide further insights into whitebark pine habitat suitability
- Future development of downscaled climate, soil, and topographic predictor variables and the addition of new occurrence records will improve habitat suitability model's predictive power



#### Acknowledgements

- Dr. Keith Weber Idaho State University | GIS Director & NASA DEVELOP Science Advisor
- Joe Spruce NASA DEVELOP | Science Advisor
- Julee Shamhart Executive Director | Whitebark Pine Ecosystem Foundation
- Kait Lemon NASA DEVELOP ID | Pocatello Fellow
- Dr. Chris Earle Wildlife Biologist |
   The Gymnosperm Database
- Dr. Dianna Tomback University of Colorado,
   Denver | Department of Integrative Biology
- Jim Strickland Botany Director | Idaho Fish and Wildlife



Image Credit: Kait Lemon