Data Manipulation & Modeling
Tutorial by Dane Coats
Google Earth Engine

Based on modeling workshop materials by Dan Carver, Tim Mayer
Updated and adapted by Erika Higa, Megs Seeley, and Dane Coats

Modeling in Google Earth Engine
Google Earth Engine is a powerful tool with access to many modeling utilities. For this exercise, we will be classifying some Landsat 8 imagery using the Random Forest classifier and control points we outline. We will also be exporting some point data, importing some other data, and finally exporting a classified image that we can show our partners, or analyze further in statistical languages such as Matlab or R.

Importing Data
[image:]For this tutorial, we are going to be using NAIP for sampling, and Landsat 8 Surface Reflectance Tier 1 data for classification. We should begin by importing those datasets from the code editors search bar.
We will also be making an area of interest polygon as well. For the purpose of this tutorial it can be anywhere with NAIP coverage and trees.Draw a polygon to create an area of interest

We are going to rename our variables to make them easier to tell apart and tell what they are:

With all of our ducks in a row, we can begin to set up some filters to bring in NAIP.

var naip2015 = NAIP
.filterBounds(AOI)
.filterDate(“2015-01-01”, “2015-12-31”);
var naip2016 = NAIP
.filterBounds(AOI)
.filterDate(“2016-01-01”, “2016-12-31”);
var naip2017 = NAIP
.filterBounds(AOI)
.filterDate(“2017-01-01”, “2017-12-31”);

This will pull in NAIP for the US, which we can use to sample areas with vegetation or other classes. Let us create our visual parameters in true color, and false color that will highlight vegetation, and then add them to the map:

	var trueVisParams = {bands:[‘R’, ‘G’, ‘B’]};
	var falseVisParams = {bands:[‘N’, ‘R’, ‘G’]};
	Map.addLayer(naip2015, trueVisParams, ‘2015 NAIP True Color’, false);
	Map.addLayer(naip2016, trueVisParams, ‘2016 NAIP True Color’, false);
	Map.addLayer(naip2017, trueVisParams, ‘2017 NAIP True Color’, false);
	Map.addLayer(naip2015, falseVisParams, ‘2015 NAIP False Color’, false);
	Map.addLayer(naip2016, falseVisParams, ‘2016 NAIP False Color’, false);
	Map.addLayer(naip2017, falseVisParams, ‘2017 NAIP False Color’, false);

We can take that, save it and run it, then look at the layers on the map, turn them off and on to check which year our study area collected NAIP. NAIP is great for ocular sampling because of its high resolution, so we will be using it to identify landcover. We will be classifying some different land types using the Random Forest model for this exercise, so we will need to add some training points to work with.
[image:]
[image:]Lets say we have a shape or point collection we want to bring in from outside. We can upload those in the assets tab by clicking the new. I’m going to import a shapefile from a previous develop project I worked on. Select the table upload and choose the files that are .dbf .shp and .shx file extensions to upload. The shape file ingest/upload will appear in the tasks bar. Since this uses a public cloud server it might take a few minutes even for a small file.

 Once ingested, this object can be imported and used like other geometry. Select it from the assets menu, and click the import button.

[image:]
Tables are the default for various geometries including point collections that you may want to use. There is a thing that exists called a fusion table that acts the same way, but GEE is deprecating fusion tables in December.
Sampling
Navigate to the geometry imports and click the +new layer. We want to change this new layer from a geometry to a featureCollection. We will name this geometry import presence, and add a single property and call that property class.
[image:]

[image:][image:]

[image:]Begin by adding some training data, by selecting the new geometry, clicking the point marker, and add some points where trees are. For this classification/time constraint, we will only add ~25 presence points.
After we have presence points, we can add absence points in the same way but with presence property being set to 0

[image:]For time sake I will provide a sample dataset. We can merge these two feature collections to make a single collection, which we will use to sample the data.
	//var importedPA = ee.FeatureCollection(‘users/coatdane/PA’);
	var PA = Presence.merge(Absence);
	Map.addLayer(PA, {}, ‘Samples’);

Now we have a sample set that includes all the points we have created. Note, these do not have to be points, and we can further merge collections together. We can, instead of presence / absence, create a class property, and set those values to unique values for each class. We can also collect polygons or lines instead of points in the same way. Each pixel will count as a sample for such collections. If you want to try a more complex classification, why not create one for trees, other vegetation, roads/urban, water?
Classifying
Now that we have our sample locations, we can begin modeling. We will use our sample points to train our classifier! Our supervised classification will use Landsat 8 imagery imported above, plus useful vegetation indices:

	var LS8_SR2 = LS8_SR
		.filterBounds(AOI)
		.filterDate(‘2015-05-01’, ‘2015-10-31’) //NAIP year + Good Visibility in Idaho
		 .filterMetadata('CLOUD_COVER', 'less_than', 20)
.mosaic();

var trueVis_LS8 = {
bands: ["B4","B3","B2"],
gamma:1,
max:2056, //selected from 2 sigma stretch
min:0,
Opacity:1
};
Map.addLayer(LS8_SR2, trueVis_LS8, ‘Landsat 8 True Color’, false);
We will add vegetation indices and Tasseled Cap brightness as additional inputs. Since I put my region of interest in Idaho, I will use the Modified Soil Adjusted Vegetation Index 2, which adjusts outputs to make up for the relatively bright soils in Idaho. In other areas, this can be NDVI or similar index.

//English variables
var red = LS8_SR2.select('B3').rename("red");
var green= LS8_SR2.select('B2').rename("green");
var blue = LS8_SR2.select('B1').rename("blue");
var nir = LS8_SR2.select('B4').rename("nir");
var swir1 = LS8_SR2.select('B5').rename("swir1");
var swir2 = LS8_SR2.select('B7').rename("swir2");
	
We can do some band algebra using the .expression() method:
	//Vegetation Indices
var MSAVI2 = LS8_SR2.expression(
 		var {
 		'B4': nir,
 		'B3': red
 		}).rename("MSAVI2");
Map.addLayer(MSAVI2, {min:-0.3, max: 0.6, palette: [‘brown’, ‘green’]}, 'MSAVI2');

So now to build our classifier we need to combine our sample points with bands we want to use as predictive variables.
	var predictors = nir.addBands(blue)
		.addBands(green)
		.addBands(red)
		.addBands(nir)
		.addBands(swir1)
		.addBands(swir2)
		.addBands(MSAVI2);
[bookmark: _GoBack]

We are going to look at the normal Landsat bands, combine them with our presence and absence points to create our sampl:

	var samples = predictors.sampleRegions({
		collection: PA,
		properties: [‘presence’],
		scale: 30 });
	print(samples, ‘samples’)

Now we need to use our samples to train our classifier. The random forest classifier is a well-known supervised classification tool that works by creating multiple decision trees and splitting variables across those trees. If you want to classify something for real outside of this tutorial, I recommend doing some reading on variable selection.

	var trainingClassifier = ee.Classifier.randomForest({
		numberOfTrees:10,
		variablesPerSplit:0,
		minLeafPopulation:1,
		bagFraction:0.5,
		outOfBagMode:false,
		seed:7}).train({
			features: samples,
			classProperty: ‘presence’});
	
	var classified = predictors.classify(trainingClassifier).clip(AOI);
	Map.addLayer(classified, {min:0, max:1, palette:[‘green’, ‘blue’, ‘red’]}, true);

Congratulations, you have helped a computer classify an image! How well do you think the computer classified the image?
Testing
We want to take to make sure the output is valid. One thing we can do is split our points into two sets and feed them into a confusion matrix, which allows the computer to check its accuracy.

	// split the data for testing, to avoid overfitting the model.
var withRandom = samples.randomColumn('random');
var split = 0.7;
var trainingPartition = withRandom.filter(ee.Filter.lt('random', split));
var testingPartition = withRandom.filter(ee.Filter.gte('random', split));

This will add a new column populated with a random number to our sample feature collection, then split them by if the random number is above or below .7 (Giving us a rough 70/30 % split). We are going to take the training partition and train a new classifier.

var testClassifier = ee.Classifier.randomForest({
numberOfTrees: 10,
variablesPerSplit: 0,
minLeafPopulation: 1 ,
bagFraction: 0.5,
outOfBagMode: false,
seed:7 }).train({
features: trainingPartition,
classProperty: 'presence',
inputProperties: ['nir', 'blue', 'green', 'red', 'swir1', 'swir2', 'MSAVI2’]});
var test = testingPartition.classify(testClassifier);
var confusionMatrix = test.errorMatrix('presence', 'classification');
print('Confusion Matrix', confusionMatrix);
var trainAccuracy = testClassifier.confusionMatrix();
print('Resubstitution error matrix: ', trainAccuracy);
print('Training overall accuracy: ', trainAccuracy.accuracy());

We can see how well our classification has done, which should prompt you to wonder what we are classifying. This is telling us how well our classification works at classifying whatever it was in common we had with our sample points, not necessarily the trees. A fine example of accuracy, but not precision.
 Our final step is that we want to output our data, both the sample locations, and the classified image.

Export.table.toDrive({
collection: samples,
description:'PredictorPoints',
fileNamePrefix: 'Predictor_Points',
fileFormat: 'CSV'});
	
	Export.image.toDrive({
 		image: classified,
		fileNamePrefix: “Classified Image”,
 		description: "testoutput",
 		scale: 30,
fileFormat: “GeoTIFF”,
 		region: AOI});

This will put an export task in the task tab, which will let you choose the export location in your google drive. This concludes our tutorial, and hopefully you find it helpful! Here is a link to the working code:

https://code.earthengine.google.com/4179203ba3604d8c9fcf27c16277fc8b
image7.png
~ Imports (3 entries) B

»var LS5 SR: ImsgeCollection "USGS Landsat & Surface Reflectance Tier 1"
» var A0T% Polygon, 6 vertices

) var NATP: ImsgeCollection "NAIP: Nationsl Agriculture Imsgery Program”

image8.png
Image upload

Table upload

Image collection

Folder

image9.png
Upload a new table asset

Source fles

Please select source files for ths asset

AssetD

users/coatdane/ assetid

» Advanced @ Open x
2 1] < Dow... > 2017FallID_Southern. L0 | Search 2017Fall D Southerl. p

El o oo =- o e

A Neme Date modified Type

7] 2017FalID_SouthernidahaDisstersi_St
7] 2017l SouthernidahaDisstersl_Stur. 10242017 1216... DBF File
[2017l I SouthernidahaDissterl_Stur. 10242017 1216... PRIl
7] 2017l SouthernidahaDissterl_Stur. 10242017 1216... 8N Fie
7] 2017Fall I SouthernidahoDissterl_Stur. 10242017 1216... SBK File
7] 2017l SouthernidahaDissterl_Stur. 10242017 1216... SHP File
7] 2017Fal I Southernidahobisasersi_Stu-. 1072472017 216... XML Docurr
7] 2017l SouthernidahaDissterl_Stur. 10242017 1216... SHXFile

10/24/201712:16 .. CPG File

i Local Disk (C)

= MyPassport (F)
= License (\1345(
= develop (naip.

= MyPassport () |, ¢ >

[8 2017rall 10 s0uthe..4 File name: | |AlFiles v

g

image10.png
S mmE e Ot S it it - A A e
NAVA_boundary » var A0T: Table users/coatdane/2017Fall_ID_SouthernIdahoDisastersIl_S..

var lsCollection = LS&Surf. filterBounds(A0T)

i VegLC_NAVA_repro] Rty : "

2017Fall_ID_SouthemidahoDisaste.
bsence
iPresence

var median = 1sCollection.median();
Hop.addLayer (median, {bands: ['24', '63',
Hap.addLayer (01, {}, false);

1.)3

XS

© 9 ~ W ceomenyimpons

D g prineule
]

OREGON

image11.PNG
s | eEworksHop «

e/Worksp...
ing

tice

op

ctionsTuto...

401 (1 poly)
 Presence

+new layer

Goodi

7

BREBEESRERERESon

// Filter the data based on date and area for 2016
var naip2016 = NATP
+FilterBounds(A0I)

.filterDate("2016-01-01", "2016-12-31");

//define viewing parameters for multi band imsges
var visParams = {bands:['N', ‘R', 'G']};
var visParamsl = {bands:['R', 'G', '8'1};

/1 add 2015 imagery to the map with false color and true color composites
Vap. addLayer (naipd015,visParams, 2015 _false”, false);
Vep. addLayer (naip2015, visParamsl, 2015 _truc", false);

/1 add 2016 imagery to the map with false color and true color composites
Vap. addLayer (naipd016, visParams, 2016 falsc”, false);
Vep. addLayer (naip2016, visParamsl, "2018_truc", false);

W L Rockford N
Coffee Point ®
B e Pagari Pingree
springfield

Morgan
Sterling

Aberdeen
Dietrich
@

Kimama
Adelaide

Minidoka

Co

image12.PNG
Configure geometry import

Name color

Importas

FeaureCollection +

Properties
presence

+A \pmp=

image13.PNG
Configure geometry import x

="

FeatureCollection

image14.PNG
Filter scri
P ion "NAIP: National Agricultu

~ Owner (1)
~ users/coatdane/Worksp.
~ Cloud Masking
i Sentinel2 (copy)

Practice
BETVT
B GEEWORKS.

1
12

+

image15.png
Configure geometry import

Name

absence]

importas

FeaureCollection +

Properties
presence 0

+Add property

color

Cancel (]

#d63000

b

4

image1.PNG
- > C @ https//code.carthengine.google.com * 0| @

| GEETutorials [Google Scholar & Drive (@ DEVELOPedia [Y DESC @ NASAEmail M ISUEmal (@ SSAEmail @ gisu [l general|idahonas: [l Dane Coats |NASAT [} hetpy/crtiolzonecr: [} SSAIEHub [} Pay [Summer 18| Telo [Linkedin »
>oogle Earth Engine [NaP ES ey~ contanepiosetu ~
e N [T [consore L
ints Naipokhari, Chetgan, Varanasi Uttar Pradesh, India [Console [-
e -] R A Use rIN(...) 0 rite to his conole.
owner (1) Naipur, West Bengal, India
~ users/coatdane/Worksp... Naipukur, Kolkata, West Bengal, India

* Cloud Masking Naipunya Layout, Jinkethimmanahalli, Varanasi, Bengaluru, Karnataka, India

» ETTest

I Button Practice RASTERS

s GEEWorkshop NAIP: National Agriculture Imagery Program import»

s Hazards

B IMWFusion

B IMWTest

I ImageCollectionsTuto...
EMOD16
B RIG_DC_Copy
B SARCheck
writer (1)

~ users/developidahopoca..
| GEE_Training_1_8C
| GEE_Training_1_BC1
| GEE_Training_1_DC(c...
1 GPM Works
B GPM_APP
B GPM_APP_031918
W GPM_APP_031918_2S
| GPM_APP_0320_GFI
| GPM_APP_FINAL >

BAKOTA

DAKOTA

~United States
| CoLorabo ¢

image2.PNG
B ST

[Fiter sorpts... | m ~ - Inports (2 entries) B
-) var NATP: ImsgeCollection "NATP: Nationsl Agri
~ owner (1) » var geometry: HultiPoint, 0 vertices [

~ users/coatdane/Worksp... I
» Cloud Masking
» ETTest
[Button Practice
& GEEWorkshop
i Hazards
B IMWFusion
B IMWTest
I ImageCollectionsTuto...
& MOD16

~ Writer (1)
~ users/developidahopoca... ~

@ Q@ MW Geomenyimpons ®

+

Fairview,

Minidoka

Acequia

|

Jackson

Rockiand

Heglar

image3.PNG
Google Earth Engine NAI
T oo Assels | ewScrigt® EE e R B | e 2 w
~ Imports (2 entries) B = Use print(...) to wr

Pt) var NATP: ImageCollection "NAIP: Nationsl Agriculture Imsgery Program”

~ Owner (1)
~ users/coatdane/Worksp... =
» Cloud Masking
» ETTest
[Button Practice
& GEEWorkshop
i Hazards
B IMWFusion o

@ 9 ~ W/ geometry (i poly) B eoygonarawing. 8 Exit §
&
¢
£
+ Cream Can Aberdeen &
Junction s
.
Fairview
American Falls
Minidoka
Neeley
Acequia LaveWaott
“Soda
Jackson e -~
14 0% Hiver
j;%‘/hmm
@
gdale Declo Cotterel
2 Niter Bench
— {
7 oo
@
Albion dahome

Daniels
Rov.

image4.png
B ST

[Fiter sorpts... | m ~ - Inports (2 entries) B
-) var NATP: ImsgeCollection "NATP: Nationsl Agri
~ owner (1) » var geometry: HultiPoint, 0 vertices [

~ users/coatdane/Worksp... I
» Cloud Masking
» ETTest
[Button Practice
& GEEWorkshop
i Hazards
B IMWFusion
B IMWTest
I ImageCollectionsTuto...
& MOD16

~ Writer (1)
~ users/developidahopoca... ~

@ Q@ MW Geomenyimpons ®

+

Fairview,

Minidoka

Acequia

|

Jackson

Rockiand

Heglar

image5.png
Google Earth Engine NAI
T oo Assels | ewScrigt® EE e R B | e 2 w
~ Imports (2 entries) B = Use print(...) to wr

Pt) var NATP: ImageCollection "NAIP: Nationsl Agriculture Imsgery Program”

~ Owner (1)
~ users/coatdane/Worksp... =
» Cloud Masking
» ETTest
[Button Practice
& GEEWorkshop
i Hazards
B IMWFusion o

@ 9 ~ W/ geometry (i poly) B eoygonarawing. 8 Exit §
&
¢
£
+ Cream Can Aberdeen &
Junction s
.
Fairview
American Falls
Minidoka
Neeley
Acequia LaveWaott
“Soda
Jackson e -~
14 0% Hiver
j;%‘/hmm
@
gdale Declo Cotterel
2 Niter Bench
— {
7 oo
@
Albion dahome

Daniels
Rov.

image6.png
~ Imports (3 entries) B

»var LS5 SR: ImsgeCollection "USGS Landsat & Surface Reflectance Tier 1"
» var A0T% Polygon, 6 vertices

) var NATP: ImsgeCollection "NAIP: Nationsl Agriculture Imsgery Program”

