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. Abstract

Louisiana’s coastline is home to widespread wetland ecosystems, including salt marshes and
mangrove forests, which provide vital ecological services. These wetlands are extremely
vulnerable to sea level rise due to climate change, urban development, and the relatively low
elevation along Louisiana’s coast. To assess the health, distribution, and vulnerability of tidal
wetlands, a variety of datasets and models were investigated. This involved using a time series
of Landsat 5 and 8 data from 1984 to present and National Wetlands Inventory data to perform
change-detection. NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and
the Japanese Aerospace Exploration Agency’s (JAXA) Advanced Land Observing Satellite
(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data were also used to
create estimates of biomass within wetlands along Louisiana’s coastline. These data then
informed the implementation and interpretation of two ecological models. First, the FORMAN
Model was presented as a preliminary tool to assess the growth rate of Louisiana’s mangrove
ecosystems. Then, the Sea Level Affecting Marshes Model (SLAMM) and the Marsh Equilibrium
Model (MEM) was applied to investigate wetland vulnerability and predict the response of all
coastal wetlands in Louisiana to sea level rise. SLAMM implemented the Intergovernmental
Panel on Climate Change’s (IPCC) climate change projection A1B, which then allowed for the
estimation of biomass loss with increasing sea level. With these data compiled and tools
implemented, the overall health and vulnerability of Louisiana’s coastal wetlands could be
appraised to inform further research and official decision-making.
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Il. Introduction

Coastal wetlands offer a variety of ecosystem services to local communities, including
improved water quality, protection from storm surges,
and habitat for wildlife. However, coastal wetlands in |
Louisiana are continually threatened by development,
pollution, and rising sea levels. This is especially
prevalent in Louisiana, where coastal mangroves and pi {
salt marshes have been encroached upon and s ! : ‘
degraded. To address this, the Coastal Wetlands
Planning, Protection and Restoration act (Public Law
101-646, Title 11l CWPPRA) provides funding to help )
restore wetlands within Louisiana. To date over 110,000 AT T
acres of wetlands in Louisiana have benefitted from this
legislation. There is limited remotely sensed data on
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analyzed and most projects are small-scale field
measurements pertaining to biomass, salinity, nutrients
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and erosion rates. A large scale field study along the
entire Louisiana coast is impractical, and therefore
utilizing remote sensing techniques is crucial for a
larger-scale analysis.

Figure 1. The project study area is within
coastal Louisiana, depicted by the area
within the red box.

Accordingly, this project aimed to provide analysis on the general health of coastal
wetlands to understand their relationship with sea level rise and human activity, and to provide a



methodology for assessing the similar concerns in other coastal wetlands using similar data and
modelling. For this ecological forecasting study, this project investigated the coast of Louisiana
along the Gulf of Mexico, as seen in Figure 1, and the utilized data range in collection date from
the year 1983 to 2014. In turn, modeled projections extend from the present to the year 2100.
By partnering with Dr. Victor Rivera Monroy of Louisiana State University and Tom Doyle of the
USGS National Wetlands Research Center, this project contributed analyses on wetland
biomass and vegetation health, mangrove ecosystem productivity, and wetland response to sea
level rise in order to address community concerns over the future of the region.

lll. Methodology

Data that was gathered include: Landsat Satellite images; UAVSAR and ALOS PALSAR
data; LiDAR and SRTM DEM; Bathymetry; Soil properties; tidal data; Land cover; Watershed;
Salinity and nutrient availability; and a map of Wetlands.

Landsat Mosaicking

Data was gathered from USGS’ GLOVIS website (http://glovis.usgs.gov/). 30x30 meter
Landsat 5 Thematic Mapper and 8 Operational Land Imager scenes were gathered from
between November and February of 1984-1985, 1993-1994, 2004-2005, and 2013-2014. The
data was then atmospherically corrected using the open source software GRASS GIS and the
method ‘dos 4’. The atmospherically corrected tiles were mosaicked together to produce one
image of the entire gulf coast.

Wetland Spectral Signatures

To obtain spectral signatures for each type of tidal wetland along Louisiana’s coastline, a
polygonal shapefile was obtained from the National Wetlands Inventory. The shapefile map was
clipped to only include tidal wetlands and then 12 codes from the SLAMM model were
incorporated into the data so that we could have 12 different maps of the different types of
wetlands. The Landsat 5 and 8 images that were used in the Landsat mosaicking were used for
this analysis, however, only 3 scenes along the coast were used. The 12 polygonal wetland
maps were extracted from each NDVI and NIR scene for all four decades. A raster calculation
was used on these mask extractions to obtain pixel values and counts and the data was
incorporated into histograms, which show each wetland class per scene per decade.

Landsat Change Detections

Change detections were conducted while focusing on one scene on the outermost coast
near the Sawdust Bend Bayou. Landsat 5 images from November 1984 and January 2010 were
atmospherically corrected using the same dos 4 method and used to produce normalized
vegetation difference (NDVI) composites to spatially understand vegetation healthiness. The
near-infrared (NIR) bands were also used for vegetation distribution in this analysis. The NDVIs
and NIR bands from 1984 were subtracted from the 2010 data to obtain spatial information of
negative change, positive change, and areas of no change. To assess the accuracy of these
maps, we produced two more change detection maps from images that were taken during
summer months. Using Landsat 5 images from July 1987 and June 2011, the same NDVI and
NIR change detections were conducted to ensure that the winter change detections were not
showing difference based on seasonal winter variation or tidal influences.

Tide Variability with NDVI and NIR
To assess tidal variability with NDVI and NIR, five Landsat 8 Operational Land Imager
scenes with minimal cloud cover were analyzed over the course of 2014. After the atmospheric



corrections, five NDVI composites were created and NIR bands were observed. A polygonal
zonal statistic was conducted around the area of Port Fourchon and the average pixel values
were obtained from areas that displayed lighter pixel values and darker pixel values. A
comparison was made between the average high and low pixel values with the tide level
(obtained through NOAA), observed at Port Fourchon, at the exact time of the Landsat image.

Biomass Mapping

Due to its complete coverage of Louisiana’s coast and its moderate resolution, ALOS
PALSAR data proved to be the most useful tool for comprehensive mapping of Louisiana’s
wetland biomass. Level 1.5 horizontally emitted, vertically received (HV) polarized data ranging
in date from September 24, 2010, through December 13, 2010, were downloaded from the
Alaska Satellite Facility’s (ASF) User Remote Sensing Access Distributed Active Archive Center
(URSA DAAC). The HV polarization was used due to its double-bounce characteristic, whereby
the radar signal interacts with the ground and the vegetation canopy before returning to the
sensor, allowing for a more accurate reading of biomass. Using the program Next ESA SAR
Toolbox (NEST), a 3x3 mean speckle filtering was initially conducted on each data tile, followed
by radiometric calibration and unit conversion into decibels (dB). The processed tiles were then
mosaicked together using ArcGIS to cover the whole extent of Louisiana’s coast, as can be
seen in Figure 2.

With the ALOS
PALSAR data
preprocessed, the HV
mosaic could be
combined with
biomass field data in
order to build a model
that enables the
calculation and
mapping of wetland
biomass at large. The

tabular biomass data,
provided by Dr. Marc
Simard, was imported
to ArcGIS to be
processed. This
involved compiling the
multiple overlapping
points into one point
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Figure 2: The mosaicked ALOS PALSAR dataset, depicting HV backscatter
values (dB) for Louisiana’s coastal region in late 2010.

Projection: NAD 1983 UTM Zone 15N
Data Source: https://ursa.asfdaac.alaska.edu/

to calculate the mean sampled biomass in grams per square meter at each individual coordinate
pair. These points can be seen as mapped in appendix Figure A 1 . Then, the HV backscatter
values underlying those points from the mosaicked data were extracted and appended to the
point data so that the relationship between biomass (g/m2) and backscatter (dB) could be
quantified. To this end, the table attached to the biomass point layer was exported and opened
in LibreOffice Calc to perform regression analysis. Plotting the above-ground biomass values
against HV backscatter for each point resulted in the graph and regression shown in appendix
Figure A 2, with an R? of 0.515. Using ArcGIS, this model was then applied to the ALOS
PALSAR data masked to the extent of the marsh types in the NWI data, thereby producing a
map of above-ground biomass for Louisiana’s coastal marshes.

Biomass Error Analysis



While marsh biomass was mapped using unadjusted HV backscatter data, tide level has
an effect on the backscatter readings in tidally influenced ecosystems like wetlands (CITE). This
necessitated accounting for tide in a separate map in order to examine the potential for error in
the final biomass calculation. To do this, the tide level at the closest National Oceanic and
Atmospheric Administration (NOAA) tide gauge for each ALOS PALSAR tile was examined at
the time of capture through NOAA'’s tides and currents map
(http://tidesandcurrents.noaa.gov/map/). Those values were recorded for each tile, as can be
seen in Figure A 3, for adjustment. Before adjusting each tile, though, a time series of ten
images for the tile containing the Port Fourchon tide gauge (tile 21) was downloaded in order to
model HV backscatter’s relationship with tide. A sample area corresponding to marshland
around the tide gauge was drawn in ArcGIS and the average HV backscatter value in that
region was recorded for each different image. Those values and their corresponding tide values
were logged in LibreOffice Calc and the regression model shown in Figure A 4 was developed
accordingly. The derivative of this model, then, was used to adjust each individual tile and
create a new mosaic by implementing the equation below.

After this adjustment, the biomass field data points were again used to extract HV
backscatter values, but this time using the mosaicked dataset that was adjusted for tide. The
biomass values and adjusted backscatter values were imported into LibreOffice Calc to create
the scatterplot and regression model in Figure A 5. The adjusted mosaic was then masked to
the marshes’ extent and this model was applied to estimate biomass with regard to tide level.
With this raster dataset calculated, it was subtracted from the original biomass raster to quantify
and represent potential error in the original calculation due to tide.

Difference Mapping

UAVSAR data was gat
incidence angle files in INC for ‘adja
the radiometric correction and @B calculations.
Dr. Marc Simard, was used P 114
to create an HDR file for
the polarized images in
GRD format to be opened
and processed in QGIS. A
header file was also
created for the incidence
angle INC files to be
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data, was used. The

equation was the polarized  Figure 3: Final SAR mosaic of UAVSAR and ALOS PALSAR datasets
image multiplied by the after preprocessing and resampling.

tangent of the incidence

angle file (“polarized

image” x tan(“incidence angle”)). Then the output image’s units had to be converted to
decibels(dB). To convert the values to dB, another equation (10*log10(“corrected image”))was
applied. The overlapping areas of the images were compared and contrasted to see if the



resultant values were feasible. Once feasible, more flight swaths were gathered to create a
large mosaic of the entire Louisiana coast, through ArcMap.

This mosaic was then further patched with the ALOS PALSAR dataset to provide a
higher resolution mosaic of the study region. An already created ALOS PALSAR mosaic was
first resampled to match the resolution of the UAVSAR dataset which was then mosaicked
together to create one large HV polarized image of the entire Louisiana coast. This larger
mosaic was created because of holes within the higher resolution UAVSAR images (Figure 3).

Since the SAR datasets vary in time of image acquisition, we conducted a difference
map to use the backscatter data as a basis of wetland change. The ALOS PALSAR mosaic
was taken from the year 2010 while the majority of the UAVSAR dataset was from 2014. The
UAVSAR data was subtracted by the ALOS PALSAR data (“ALOS PALSAR” — “UAVSAR”) to
output this difference map which provides information of change in wetland extent.

Forman model

LiDAR DEM was gathered from the Louisiana State University Virtual Coast Data
Archive and the newest SRTM DEM data was taken from JPL’s website. Both DEMs were first
mosaicked then incorporated in an equation using the raster calculator in ArcGIS to output a
canopy height map. In 1989 there was a freeze that killed most of the mangroves within
Louisiana, and the SRTM DEM was acquired in 2000. This allowed us to estimate mangrove
growth rate based on an eleven year time period. We were able to estimate nutrient availability
using salinity, light availability, growth rate and a DEM by working backwards within the Forman
model.

The Forman model was used to calculate growth potential in accordance with the Chen
and Twilley’s (1998) study:

where, G is a growth constant for a specific mangrove species, D is the tree trunk diameter at
breast height (cm), H is tree height (cm), S(SALT) is the salinity multiplier, N(Nut) is the nutrient
multiplier, T(DEGD) is the temperature multiplier, and r(AL) is relative light availability. Growth
potential is a measurement of diameter at breast height growth for a given species and is
directly affected by the four environmental multipliers. The model used parameters fitted for
Avicennia germinans for growth potential because it is the only species of mangroves in
Louisiana. The salinity raster was acquired by taking salinity values from gauges and
interpolating the data to create a continuous raster. Both USGS and Louisiana Department of
Environmental Quality gauges were used to obtain salinity readings. Growing degree days were
obtained from the Integrated Plant Protection Center of Oregon State University’s US degree-
day mapping calculator (http://pnwpest.org/cgi-bin/usmapmaker.pl). Available light was a
constant found within Chen and Twilley’s (1998) study. We used Python to write the model code
and used gdal, rasterio and numpy to run calculations on the rasters. Python was used to allow
our model to be open sourced.

Sea Level Rise Affecting Marsh Model (SLAMM)

SLAMM is a downloadable software that needs at least three input ascii files, DEM,
SLAMM categories and slope. This model is a physical model, as opposed to biological model,
that is used to predict how wetland type with change overtime. We used a 30 meter resolution
SRTM DEM, ArcGIS to derive slope from the DEM, and used a National Wetlands Inventory
raster that was categorized into SLAMM wetland categories. We chose the IPCC A1B sea level
rise scenario within the tool and modeled wetland change for every 25 years until year 2100.

Marsh Equilibrium Model (MEM)



MEM is used to estimate both productivity and elevation change within marsh
ecosystems. The model uses both elevation as well as biological inputs. We used python to
write the MEM model and used gdal, rasterio and numpy within the script to perform raster
calculations. Change in marsh productivity and marsh elevation was derived from the following
equations developed by Morris et al. (2002)

where B is productivity (g*m?*yr') a, b and ¢ are model coefficients, dY,/dtis change in marsh
elevation (cm), D is depth (cm), q is sediment loading, k is trapping efficiency. To find depth we
subtracted the LiDAR DEM from a mean higher high sea level raster. Negative values were set
to zero since this indicates that the area is above sea level at higher high tide and thus there is
no depth. Values for coefficients a, b, and ¢ were the same as those within Morris et al. (2002).
Using our produced marsh biomass raster we determined regions of high and low biomass. We
set regions with high biomass to have a sediment loading of 0.0018 and low biomass to be
0.00018 and trapping efficiency was set to 0.000015. These values were obtained from Morris
et al. for regions with high or low sediment trapping efficiencies (2002).

IV. Results & Discussion

Wetland Spectral Signature Analysis

The histograms that were created to analyze wetland type and pixel values and counts
did not provide clear enough distinctions for spectral signature conclusions. We cannot
conclude that wetlands types are distinguishable by NDVI or NIR in this scenario. The individual
histograms show wetland types having very similar spectral signatures. However, the wetland
types vary immensely from decade to decade and from scene to scene. The wetland types lie
between 0.2 and 0.5 pixel values for NDVI and between 0 and 0.3 pixel values for NIR data
(Figure 5).
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Figure 5: Histograms showing pixel values and counts of wetland types of 2014 NDVI and NIR.



Change Detection Analysis

The NDVI and NIR change detections between summer and winter were strongly
comparable. The NIR change detection proved 48.1% negative change in the winter and 64.2%
in the summer, 50.9% positive change in the winter and 34.4% in the summer, and
approximately 0.8% no change in the winter and 1.3% in the summer. The NDVI change
detection shows 67.7% negative change in the winter and 67.4% in the summer, 31.9% positive
change in the winter and 32.3% in the summer, and 0.2% no change in the winter and 0.3% in
the summer. The summer and winter NDVI numbers are far more similar than those of the NIR.
Although the percentages vary from NDVI and NIR and there are seasonal variations between
summer and winter, there is a clear spatial similarity of the vegetation/wetland losses and gains.
All four maps show a distinct negative change in around the Garden Island Bay area and
positive change east of the Mississippi River near the Willow Bauyou and we are confident in
the loss and gain shown in this areas.

Tide Variability Analysis

NDVI and NIR images will be influenced by greenness, atmospheric corrections, and
tide. However, in this scenario, we assessed that there is not necessarily variability of NDVI and
NIR with tide because there is seemingly no correlation between high NDVI and NIR and low
tide (and low NDVI/NIR and high tide; Figure 6). The weak correlation could be influenced by
cloud cover, which could provide erroneous NDVI and NIR pixel values, even after the images
have been atmospherically corrected. Another area and port should be analyzed with the same
methods.
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Figure 6: Maps of change detection of winter 1984 and 2010 NDVI and summer of 1987 and 2011 NDVI.
Both figures show brown as negative change and blue as positive change.

Biomass Analysis
Louisiana’s marshes contain regions that are severely degraded with very little
vegetation biomass (Figure 7). In particular, the marsh region around Port Fourchon, to the west



of the Missisissipi River delta shows widespread low-biomass, indicating severe degradation.
Other areas of concern that show severely low biomass include Marsh Island west of that
region, the nearby shore west of Marsh Island, and the wetlands fringing Louisiana’s northeast
shore.
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Figure 7: A biomass map of Louisiana’s marshes, in grams per square meter. This map product
was derived from ALOS PALSAR and National Wetlands Inventory data.

This map and the underlying data is a good preliminary indicator of marsh biomass, but
there are several confounding factors that must be noted. The first such factor is the limitation
inherent in the biomass field data. The utilized dataset contained only nineteen individual
biomass sample plots within Louisiana’s marshland, which is a limited number of data points
with which to build a regression model. Furthermore, the geolocated coordinate pairs attached
to those points have uncertain accuracy, so their mapped location may be slightly shifted from
their actual location. Nonetheless, the regression model built from those points still shows a
clear relationship with an R2of 0.515 and a visually distinct linear relationship through the
majority of the points. With regards to the biomass field data’s shortcomings, then, a more
comprehensive dataset with more sample sites would enable a more accurate model with a
theoretically higher R? to be developed. Despite this, the results of the biomass calculation in
Figure # appear to be sound based on its correlation with both the Landsat and HV backscatter
difference analyses in Figures # and #.

Another factor that introduces error potential into the above-ground biomass results is
tide. Local tide has an appreciable effect on SAR backscatter readings in tidal wetlands, as
higher water levels amongst vegetated areas lower the backscatter value, and vice versa. As
such, quantifying the mapped biomass data’s potential for error based on tide is an important
aspect of interpreting those results. This analysis produced a second biomass map which is
based on the PALSAR data corrected for local tide levels (Appendix Figure A 6). As that map
shows, there are regions that are visually distinct along the tiles’ borders. This is due to those
regions having an extremely high tide relative to the rest of the regions. Equivalent tide values
were not available or represented in the backscatter versus tide model, so those regions with
extreme values tides in the original data contain the most potential for error. With this in mind,
the error potential map in Figure 9 was calculated by subtracting the tidally adjusted biomass
raster from the regular biomass raster. As Figure # shows, there is greater uncertainty in those
regions with more extreme tide levels at the time ALOS captured the utilized data. Higher error
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Figure 9: Error potential calculated derived from the tidally adjusted biomass and
regular biomass rasters. These values indicate how far each pixel may have been
overestimated or underestimated in the original biomass calculation based on
tidal influence.

potential is denoted by the deep red and blue colors, and the map shows that the areas with



significant areas are largely regions with medium to high biomass estimates. However, the
aforementioned regions of interest that are subject to degradation and severely low biomass are
largely areas with middling error potential. This affirms the conclusion presented by the biomass
calculation that those areas indeed show abnormally low biomass values that cannot be
attributed purely to error. With this methodology, analysis, and set of maps in place, it is clear
that biomass mapping using L-band radar is an effective tool for assessing wetland health.

Difference Map

The difference map shows the changes in backscatter values in decibels (dB) from the
ALOS PALSAR and UAVSAR mosaics. The backscatter values could then be interpreted as
overall biomass change depending on the high and low values that is depicted. In Figure 10
high values represent marsh wetland loss, while the low values represent gain. There is a
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Figure 10: A difference map between ALOS PALSAR and UAVSAR mosaics to portray change in HV
backscatter values. The images from ALOS PALSAR were acquired in 2010, and in 2014 for the majority
of the UAVSAR mosaic. High (red) values correlate with areas of marsh wetland loss and low(green)
values with marsh wetland gain. This can be used for decision making purposes through biomass
change detection, highlighting degraded areas.

correlation between the areas of wetland loss and gain with the amount of biomass estimated
using ALOS PALSAR images, providing possible applicability of radar backscatter data. The
data correlates well when also comparing the NDVI change detection maps.

Sea Level affecting Marsh Model (SLAMM)
The Sea Level Rise
affecting Marsh model shows
that marshes are retreating
upland (Figure 11). There is
also a large amount of marsh
wetland loss from present day
to year 2025 which will result in
significant biomass loss
(roughly 2358000 metric tons). - é’;sn
This reduction in biomass e @
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within marshes will likely
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Figure 11. Modeled marsh wetland change from present day to year
2025 using SLAMM and the A1B sea level rise scenario.



elsewhere, this will decrease the capacity of Louisiana’s marshes to help combat climate
change.

Forman Model

Mangrove extent within
Louisiana is sparse and mangrove
height is relatively small in
comparison with other mangrove
groves. Mean mangrove height
within Louisiana is roughly two
meters, and the diameter at breast
height growth rate vary from 0.002
cm/yr to 0.9 cm/yr (Figure 11).
There is no inherent observable
pattern to differences in growth
rates due to the diffuse mangrove
strands. Further analysis should <
be conducted to better understand S DBH growth rate (crigy
the key drives in mangrove growth

rates. e

Marsh Equilibrium Model (MEM)

Within MEM we
successfully estimated change in Figure 12. Diameter at breast height (DBH) growth rate (cm/yr)
marsh elevation and estimated for mangroves within Port Fourchon.

above ground productivity (Figure

13). Comparing the estimated change in
elevation over one year to estimated sea
level rise in combination with land
subsidence we were able to determine if
marsh elevation change can keep up with
sea level rise. The outputs of MEM
suggests that a large area of marshes will

Above ground production (g/m2*yr)

become submerged (Figure 14). To e

0

improve accuracy of the model field
research should be conducted to better
estimate sediment trapping efficiency.

100 Kilometers

Figure 13: Modeled above ground biomass for
marshes within Louisiana’s coast.



Change in marsh elevation versus sea level rise and subsidence

Under Sea Level
B Above Sea Level

Figure 14: Change in marsh elevation over one year versus rise in sea level over one year. Areas in
green are regions where marsh elevation is projected to change at the same rate or faster than sea
level rise and subsidence. Sea level rise and subsidence is estimates at 9mm/yr.

V. Conclusions

The biomass mapping methods proved to be fairly robust in providing estimates of
wetlands in the Louisiana coast. With an R? of 0.52 on the regression model, biomass maps
helped us visualize the extent of wetland gain and loss. Biomass estimation was also estimated
for the UAVSAR dataset, but ended in low correlations with the backscatter values due to poor
biomass point coordinates. However, these maps can be bolstered with more comprehensive
biomass field data. A difference map between the SAR datasets proved to be useful in showing
similar marsh wetland change. Using the SLAMM model, wetland marsh response to sea level
rise was estimated for the years 2025, 2050, 2075, and 2100. An estimated 10,708,588 metric
tons, of existing marsh biomass, are projected to be lost by 2100 due to sea level rise. The
change detection analyses of NDVI and NIR proved to be effective tools to map wetland extent
and vegetation loss and gain, but lacked correlations with tidal fluctuations and could have
easily been influenced by atmospheric disturbances in the data. Conducting such large scale
analyses with remote sensing tactics, we were able to assess a gradual marsh wetland decline
in Louisiana’s coastline.
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VX. Appendix A

= Biomass Sample Sites Il Marsh

Figure A 1: The location of the biomass sample sites overlaid on the extent of marshes from the
National Wetlands Inventory.
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Figure A 2: The scatterplot and regression model derived from the ALOS
PALSAR HV data and the biomass field data. The regression model was used to
calculate marsh biomass.



Tile# Date

1 12/1/2010

2 12/1/2010
11/14/2010
11/14/2010
12/13/2010
12/13/2010
12/13/2010
11/26/2010
11/26/2010
9/24/2010
11 9/24/2010
12 9/24/2010
13 12/8/2010
14 12/8/2010

LN AW

5

Time

4:46:24
4:46:15
4:44:34
4:44:26
4:42:02
4:41:53
4:41:45
4:40:02
4:39:54
4:38:53
4:38:45
4:38:37
4:35:33
4:35:24

Tide Level (m) Closest Station 15 12/8/2010

-0.401Port Arthur (TCOON), TX 16 11/21/2010
-0.3258abine Pass North, TX 17 11/21/2010
-0.131Port Arthur (TCOON), TX 18 11/21/2010
0.0625abine Pass North, TX 19 11/4/2010
-0.819Bulk Terminal, LA 20 11/4/2010
-0.819Bulk Terminal, LA 21 11/4/2010
-0.845Calcasieu Pass, LA 22 12/3/2010
0.446Freshwater Canal Locks, LA 23 12/3/2010
0.369 Freshwater Canal Locks, LA 24 12/3/2010
0.392Freshwater Canal Locks, LA 25 11/16/2010
0.392Freshwater Canal Locks, LA 26 11/16/2010
0.392Freshwater Canal Locks, LA 27 11/16/2010
-0.314Berwick, LA 28 10/30/2010
-0.314Berwick, LA 29 10/30/2010

4:35:16
4:33:42
4:33:34
4:33:25
4:31:51
4:31:42
4:31:34
4:29:12
4:29:04
4:28:55
4:27:21
4:27:13
4:27:05
4:25:28
4:25:20

0.016LAWMA, Amerada Pass, LA
-0.213Berwick, LA
-0.213Berwick, LA
0.276 LAWMA, Amerada Pass, LA
0.269New Canal Station, LA
0.056WestBank 1, Bayou Gauche, LA
0.155Port Fourchon, LA
-0.206 New Canal Station, LA
-0.17WestBank 1, Bayou Gauche, LA
-0.039Grand Isle, LA
0.457Bay Waveland Yacht Club, MS
0.1195hell Beach, LA
0.173Pilots Station East, SW Pass, LA
0.056Pascagoula NOAA Lab, MS
0.056Pascagoula NOAA Lab, MS

Figure A 3: The footprints of each tile in the mosaicked ALOS PALSAR dataset and its

corresponding date, time, tide level, and closest NOAA tide gauge.
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Figure A 4: The scatterplot and regression model derived from
the ALOS PALSAR HV data (decibels) and tide level (meters
from mean sea level) at NOAA’s Port Fourchon tide gauge.
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Figure A 5: The scatterplot and regression model derived from the ALOS PALSAR HV data
adjusted for tide and the biomass field data. The regression model was used to estimate
potential error due to tide level in the previous biomass calculation.
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Figure A 6: Louisiana marsh biomass derived from tidally-adjusted ALOS
PALSAR data.
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Figure A 7: Graph of high and |
at the time of each image.



