

National Aeronautics and Space Administration

Africa Food Security & Agriculture

Predicting the Likelihood of Human-elephant Conflict and Assessing Elephant Habitat Conditions During Extreme Drought and Crop Deficit in the Kavango-Zambezi Area

Madison Bradley, Jennifer Gallucci, Jonathan Moallem, Erika Munshi

Georgia – Athens | Fall 2020

Basemap by ESRI

Kavango-Zambezi Area

- Conservation lands in 5
 African countries
- 75% of the African
 elephant population &
 >3 million people
- Subsistence farming dependent on seasonal rainfall

Project Partners

Connected Conservation

"Conserving animals, enhancing livelihoods in areas of human – animal conflict"

Focus Area: Victoria Falls, Zimbabwe

The Ecoexist Project

"Reducing conflict and fostering coexistence between elephants and people"

Focus Area: Okavango Delta, Botswana

Victoria Falls, Zimbabwe

- Deciduous savanna woodland that receives
 ~668 mm rainfall per year
- UNESCO World Heritage Site
- 13 bull elephants collared 2017-2020

Okavango Delta, Botswana

- Semi-arid savanna region that receives
 ~500mm rainfall per year
- Ramsar Wetland of International Importance & UNESCO World Heritage Site
- 20 elephants collared between 2014-2020

Community Concerns

Ĩ

Objectives

- Analyze the relationship between elephant movement, vegetation health, & climate conditions
- Develop reusable codes for partners to replicate our analysis as more elephant data becomes available
- Create elephant kernel density heatmaps to identify human-elephant conflict risk areas

Data Sources: Satellites and Sensors

Landsat 8 Operational Land Imager (OLI)

- Spatial Resolution: 30 m
- Temporal Resolution: 16 days
- Used for: Vegetation Indices (NDVI, SAVI)

Global Precipitation Measurement Core Observatory (GPM)

- Spatial Resolution: 10,000 m
- Temporal Resolution: 30 minutes
- Used for: Precipitation

Elephant GPS tracking data for 13 bulls in the Victoria Falls area (2017-2020). Data provided by Connected Conservation.

METHODOLOGY

Elephant Tracking Data: R Studio

Elephant Tracking Data: Summary

Elephant Tracking Data: R Studio

Data Integration and Synthesis

RESULTS: NDVI vs SAVI

SAVI Dry Season 2019

RESULTS: NDVI

Mean: ~0.54

Mean: ~0.45

RESULTS: Vegetation Health

NDVI Change Dry Season 2017-2019

NDVI Change Wet Season 2017-2019

Mean: ~0.11

Mean: ~0.012

RESULTS: PDSI

RESULTS: Temperature

RESULTS: Monthly Precipitation

RESULTS: Kernel Density Heatmaps

2018 Dry

2019 Dry

RESULTS: Kernel Density Heatmaps

2019 Dry

2019 Wet

RESULTS: Kernel Density Heatmaps

RESULTS: Bivariate Analysis

High

RESULTS: Bivariate Analysis

Conclusions

- Kernel density heatmaps show that elephants travel greater distances during the wet season and congregate around water sources and agricultural land during the dry season
- The produced code showed wide-spread increases in NDVI, SAVI, and precipitation measurements in the wet seasons compared to dry, directly observing yearly fluctuations that likely influence elephants' different movements between the seasons
- The study area experienced a 19.6% decrease in mean NDVI from 2017 to 2019, indicating strong drought conditions that may have had an impact on elephant movements

Data Limitations

- Lack of high-resolution imagery
- Climate data not available for 2020
- GPS data gaps
- Monthly composite cloud cover

GPS Data Gaps

Monthly Composite Cloud Cover

Future Work

- High-resolution imagery (PLANET)
- Updated land use & land cover maps
- Predictive model
- Additional movement drivers:
 - Mating behavior
 - Bush fires
 - Land surface temperature
 - Ephemeral water sources
 - Crop foraging preference
- Cyanobacteria

ACKNOWLEDGEMENTS

Partner End Users:

Ecoexist Project, Botswana, <u>http://www.ecoexistproject.org/</u> Dr. Anna Songhurst, Field and Policy Director Dr. Graham McCulloch, Policy Director

Collaborators:

Connected Conservation, <u>http://connectedconservation.com/</u> Dr. Ferrell Osborn, Director Malvern Karidozo, Senior Researcher

DEVEL@P

Science Advisors:

Dr. Marguerite Madden, University of Georgia, Department of Geography, Dr. Andrea Presotto, Salisbury University, Geography and Geosciences Department Dr. William Langbauer, Bridgewater State University, Biology Department Dr. Sergio Bernardes, University of Georgia, Department of Geography

Special Thanks To: Crystal Wespestad Kate Markham Anastacia Makati Trey Dakota Wehlan

This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations.