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ELLICOTT CITY, MARYLAND

Source: DEVELOP Team

 Located on the 
Patapsco River in 
Howard County, MD

 City population 
~65,000 in 2010

 1,000 residents in 
Historic Downtown
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COMMUNITY CONCERNS

Source: Howard County Gov’t , DEVELOP Team

Increasing warning time 
before a flood can 

save lives and money

Severe flooding over 
the past decade

Effective use of data for 
proactive emergency 

management 



May 2018 Flood 
2 hour time lapse

DOWNTOWN IN DANGER

Source: Ron Peters



PARTNERS

Howard County Government
Office of Emergency Management
Stormwater Management Division

NOAA – NWS 
Baltimore-Washington Weather Forecast Service

Source: DEVELOP Team, NOAA, NWS



A THREE-TERM PROJECT

FLuME

Machine Learning
NASA Earth Observations

Identify Data Gaps

Image credit: DEVELOP Team, NextAvenue, Max Pixel 

Deep Learning Model
Fill Data Gaps

Evaluate Model

FLASH

Integrate Model into Partner’s 
Decision Making Process

Threat Matrix



OBJECTIVES

Improve FLASH with Long Short-Term 
Memory (LSTM) framework

Utilize new datasets to improve 
FLASH accuracy

Determine the importance of each 
input variable for best performance 

FLASH

Improved Model 
Performance



THE DEEP LEARNING APROACH

A Landscape with Memory:
Soil Moisture and Precipitation

Video Credit: NASA’s Science Visualization Studio
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RESOURCES USED
NASA Earth Observations

Additional Variables Model

NLDAS-2

Satellites

TRMM
TMI

Aqua
AMSR-E



RESOURCES USED
Gauge Data

Inputs

Additional Variables

Precipitation
Soil Moisture

Miles

Tiber-Hudson 
Watershed

Stream Gauge 
at Ellicott City

Stream Gauge 
at Catonsville

Stream Gauge 
at Hollofield

Rain Gauge

Stage Height 
and Stream 

Gauge

Howard County Gauges (3)
 Precipitation 

 Stream height in City

 Discharge

USGS Gauges (2)
 Discharge

10.50 2



METHODOLOGY – Framework

Stage Height 
Prediction 

Source: DEVELOP Team, Behance

On site data

NASA data
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METHODOLOGY – Deep Learning

Precipitation

Soil Moisture

Discharge

Ellicott City 
Water Level

Predicted 
Value

Output 
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LSTM Layers
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Inputs
(Known)



Total Hourly Precipitation 
(OneRain, in)

Soil Moisture 
(NLDAS, kg/m^2)

Hollofield Discharge 
(USGS, cfs)

Catonsville Discharge 
(USGS, cfs)

Ellicott City Stage 
(OneRain, ft)

Input Data

Predicted Value

MAKING PREDICTIONS



FLASH Model Performance (2016-2020)
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Warning 2
Over-curb Flooding
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CONSIDERATIONS

 The model’s predictions are only as good as the data it is provided.

Accuracy evaluations are only relevant at stream gauges used for 
calibration.

Currently, weights are randomly initialized; therefore, model output 
quality can vary.



CONCLUSIONS

The model’s 
predictive

capability was 
developed.

The LSTM deep 
learning framework 

improved the 
model’s 

performance.

NASA Earth 
observations 

coupled with well 
documented 
ground data

bolstered model 
performance.
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NEXT STEPS
Enhance model’s prediction accuracy 

using data from other flood-prone 
watersheds

 Integrate socio-economic data to 
represent the impacts of predicted 
flood levels on different parts of the 
community

Create an simple, intuitive graphical 
user interface for end users 

Source: DEVELOP Team
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