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1. Abstract
Tick-borne diseases are a public health issue in southern Maine, and recent estimates completed by the State of Maine suggest that as little as 1 in 10 cases of Lyme disease are actually reported. There are three tick-borne diseases known to occur in Maine that can be transmitted by the deer tick (Ixodes scapularis). Due to the higher prevalence and attention from Maine public health institutions, Lyme disease was the predominant focus in this study. The Massachusetts – Boston NASA DEVELOP team partnered with the Maine Medical Center Research Institute, Lyme & Vector-Borne Disease Laboratory; Maine Vector-Borne Disease Working Group; and Bigelow Laboratory for Ocean Sciences to assist with Maine’s tick-borne disease mitigation efforts. The team utilized NASA data from Landsat 8 Operational Land Imager (OLI), Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), as well as ancillary datasets, from January 2008 to June 2019. Accurate land cover and tick-borne disease risk maps were created for Cumberland County, Maine. The land cover maps allow for improved public awareness of areas conducive to tick encounter. The risk maps illustrate how variations in temperature and humidity contribute to the spatial distribution of tick-borne illness risk and determine the estimated number of actual Lyme disease incidents per year in every town. In addition, the team created a time series analysis that informs the end user’s research related to the impact of environmental parameters on tick distribution.
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2. Introduction
2.1 [bookmark: _Toc334198721]Background Information
As the climate continues to change, allowing ticks to thrive in new habitats, communities are becoming increasingly concerned by the spread of tick-borne illnesses. Lyme disease (LD) is the most common tick-borne disease in temperate zones of the Northern Hemisphere. The most common agent known to cause LD in North America is Borrelia burgdorferi, which is transmitted from mammal to mammal by ticks of the species Ixodes scapularis and Ixodes pacificus, more commonly known as the deer tick and the western-blacklegged tick (Ozdenerol, 2015). Ticks live through a three-stage life cycle over two years: larva, nymph, and adult. When ticks are in the nymph stage, they can transmit infection when they feed. Most humans are infected through their bites, usually during the months of May through July (Pepin et al., 2012).

The US Centers for Disease Control and Prevention (CDC) states that once infected, typical symptoms of LD include fever, headache, fatigue, and a skin rash. If left untreated, the infection can spread to the joints, heart, and nervous system (Centers for Disease Control and Prevention, 2019a). The rising number of annual reported human cases of LD calls for a deeper understanding of the relationship between tick-borne illness risk and the surrounding environment to help issue earlier warnings and prevent risks to the population (Alonso-Carné, García-Martín, & Estrada-Peña, 2016; Ozdenerol, 2015). Although the CDC has had systematic surveillance for LD in place since 1982, the impact on personal health is critical and the direct medical costs associated with LD is estimated at 2.5 billion dollars annually (Centers for Disease Control and Prevention, 2019b). In addition, there is currently no vaccine available for human use (Ozdernol, 2015).

Previous projects have looked into the idea that climate conditions can regulate the development of a tick’s life cycle. In a study done by Diuk-Wasser et al. (2010), the density of nymphal deer ticks in the eastern United States was predicted using vapor pressure deficit (VPD), and researchers also found that temperature and relative humidity can regulate the activity of these ticks (Kalluri, Gilruth, Rogers, & Szczur, 2007). Another study examined the distribution of deer ticks in the upper Midwest in relation to environmental factors using satellite, climatological, and ecological data to determine tick habitats. They concluded that land cover was a dominant contributor to tick presence and constructed risk maps indicating the suitable habitats already claimed by deer ticks (Guerra et al., 2002). Other studies have applied approaches that combine spatial modeling using GIS and remote sensing, which allows for identification of tick habitats from multispectral imagery and can provide large-scale data with adequate spatial and temporal resolution (Ozdenerol, 2015). A study conducted in 2010 found that the Normalized Difference Vegetation Index (NDVI) used to predict habitats of the deer tick was the “most consistently significant variable for predicting tick distributions,” as it informs us of the availability of moisture for free-living ticks (correlated to tick mortality rates) (Berger, Wang, & Mather, 2013; Diuk-Wasser et al., 2010; Kalluri et al., 2007).

Similarly, it has been found that the risk of coming in contact with ticks increases where two different habitats meet. For example, the fragmentation of continuous woodland creates an ‘edge’ habitat, which can be more structurally complex and species rich. This means that the edge habitat is attractive not only to mice, but also to a wide array of vertebrate species including deer, chipmunks, and raccoons, all known to serve as hosts for immature deer ticks (Frank, Fish, & Moy, 1998). Landscapes with abundant edges might attract both heavy human use and pose high entomological risk, becoming an ideal target for mitigation (Horobik, Keesing, & Ostfeld, 2006). 

Studies have also used supervised and unsupervised classification (using a priori knowledge of the land cover classes) of tick habitats to get a sense of the relationship between tick distributions and environmental characteristics (Ozdenerol, 2015). A study done by Eisen, Eisen, & Lane (2006) mapped the high-risk areas of human exposure to LD, then used a supervised classification model based on seasonal Landsat 5 Thematic Mapper (TM) images to identify the key habitat of western-blacklegged tick nymphs. Similarly, Poortinga et al. (2019) made a training dataset in Google Earth Engine that can create probability layers for imagery taken from Landsat 8, Sentinel-1, and Sentinel-2. Using these layers, they created land cover maps for each land cover class. This method of classification was found to be 84% accurate, and after including additional validation points, their final accuracy was 91%.

Our team conducted this study in collaboration with southern Maine communities located in and around Cumberland County, Maine (Figure 1).  Data for this project were acquired from January 1, 2008, to June 20, 2019. This time period was chosen based on satellite data availability and to ensure that the most recent data were taken into account.
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Figure 1. Shown above is a map of Maine highlighting Cumberland County. 

2.2 Project Partners & Objectives
The NASA DEVELOP Southern Maine Health & Air Quality team partnered with the Maine Medical Center Research Institute (MMCRI) Lyme & Vector-Borne Disease Laboratory, the Maine Vector-Borne Disease Working Group (the Working Group), and Bigelow Laboratory for Ocean Sciences. As a collaborator, Bigelow Laboratory for Ocean Sciences assisted in data assessment and interpretation. During the term MMCRI and the Working Group, the primary end users of this project, focused on risks of tick-borne illness, mitigation efforts, and public outreach to communicate these risks.

This project is beneficial to partners as it provides remotely sensed data about the spatial distribution of tick-borne illness risk. MMCRI and the Working Group do not currently use remote sensing data to collect information about tick-borne illness risk, making this project particularly useful for decision-making by extending their resources beyond in situ data. A modeled map displaying tick-borne illness risk in Cumberland County, created using disease incidence and environmental parameter influence, will be beneficial for both MMCRI and the Working Group. By leveraging their resources to more holistically examine tick-borne illness in Maine, this project will help support increased mitigation and public awareness in high-risk areas.

The objectives of this project included creating a detailed land cover map as well as adaptable code to be utilized by MMCRI, the Working Group, and Maine communities for continuous land cover assessment. This project also focused on illustrating how different environmental factors specific to Cumberland County, such as land cover, temperature, and humidity, affect the distribution of local tick-borne illness risk. This information can then be utilized by MMCRI and the Working Group for informed and targeted outreach. This approach was employed with the aim of providing Southern Maine communities with meaningful data and tools to impact future research.

[bookmark: _Toc334198726]3. Methodology
3.1 Data Acquisition for Land Cover Analysis 
The team used Google Earth Engine (GEE) to analyze surface reflectance remote sensing imagery in order to create a land cover map for Cumberland County, Maine. GEE is a free, cloud-based geospatial research service. GEE houses a variety of datasets, raw imagery collections, and pre-processed imagery collections from NASA and European Space Agency (ESA) sensors. Cloud-based services, like GEE, eliminate hardware requirements, such as storage limits and processing power.

The team acquired Landsat 8 Operational Land Imager (OLI) Level-1 data from GEE. Landsat images were viewed and selected using USGS Earth Explorer, an online database of Landsat and other remotely sensed images. The dates of July 12th, 19th, and 28th, 2018, were chosen as they were the clearest images available over the study area for the summer of 2018 with less than 10% cloud cover. These dates were then imported into GEE for processing.

3.2 Data Processing and Analysis for Land Cover Analysis 
DEVELOP participants used two different approaches for data processing to create land cover maps in GEE: supervised classification and unsupervised classification. For both processes, Landsat 8 OLI images of Maine were loaded directly into GEE. As there was not a single Landsat 8 OLI image that entirely covered Cumberland County, three tiles, Path-Row 11-29, 11-30, and 12-30, within GEE were merged to create a single mosaic image that contained the entire study area. The team then used the classification to create an edge map that illustrates the locations where land cover classes touch or overlap.

To perform the supervised classification, the team defined a list of land cover classes to be identified from the image. Nine classes were ultimately selected: low density development, mid density development, high density development, coniferous trees, deciduous trees, mixed trees, cultivated, water, and barren. For the three densities of developed land, a layer of percent impervious surface was added from the National Land Cover Database (NLCD). The percent imperviousness range for each developed classification was separated at the upper threshold of 22%, 56%, and 100%, respectively. The cultivated land cover class includes agricultural areas, open fields, and non-forest vegetated areas influenced by human actions. For each of the other classes, a set of training data were manually input and processed in GEE. Based on the given data, GEE subsequently produced a land cover map of Cumberland County including the nine assigned classes.

An unsupervised classification methodology was also initially performed. The team used a random set of pixels from the Landsat 8 image to create training data for GEE to use in assigning land cover classifications. These training data were then applied to the whole image and the code was specified to produce four output classes. GEE then produced a map with four classes, based on randomized training data from the image that the team then classified manually as water, urban, vegetation, and agriculture.

After exploring both supervised and unsupervised classification techniques, supervised was found to be better suited for the study area and partners. Therefore, all ensuing land cover analysis and discussion was solely based on supervised classification methods. The team traveled to Cumberland County, Maine to perform ground truthing validation of 18 latitude/longitude training points. Ground truthing provided visual confirmation of whether each location had been correctly or incorrectly classified within the original land cover map. Additionally, a confusion matrix was included within the supervised classification script to assess the accuracy of how well the classifier was able to correctly label training data.

The DEVELOP team then used the information gathered in the land cover map to create an edge map of Cumberland County. Based on the supervised classification, three land cover types (forest cover, urban cover, and cultivated) were selected to help in finding the edge habitat. Each layer throughout this process is masked to 0’s and 1’s to aid in mapping.

Once the forest cover layer was introduced from the land cover map, the distance to the edge of the forest cover (within 30 meters) was found by generating a distance kernel based on Euclidean distance, then computing the distance using that kernel. With this distance layer, a buffer was found along the edge of the forest cover using its focalmax. These steps were repeated for the urban cover. To create the edge map, the locations where the forest and urban buffers touched or overlapped were isolated, as they are considered the ‘forest-urban edge’.

Code was also created to calculate the percentage of edge in a certain location. By computing the total number of pixels in the original forest, urban, and agriculture covers, then calculating the number of pixels in the edge layer, it is possible to calculate what percentage of the land cover is considered to be edge area. This calculation can be done for all of Cumberland County, or can be limited to specified towns.

3.3 Data Acquisition for Time Series Tool 
This time series tool is a modified version of the Hydrologic Inputs Tool (HIT) that was created by the NASA DEVELOP Niagara Falls Disasters team during the spring 2019 term. The tool was subsequently modified to include data from Terra Moderate Resolution Imaging Spectroradiometer (MODIS), the Gridded Surface Meteorological (gridMET) dataset, and the Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset. The team acquired data from GEE to incorporate NDVI, land surface temperature (LST), humidity, VPD, and precipitation into a user interface that allows users to visualize data during available years (Table 1).

Table 1
Shown are the datasets included in the Time Series Tool, with GEE Image Collection ID and time range.
	Dataset
	GEE ID
	Use
	Time Range

	Terra MODIS
	MODIS/006/MOD11A1
	Land Surface Temperature
	January 1, 2010 – June 20, 2019

	Terra MODIS
	MODIS/006/MOD13Q1
	NDVI
	January 1, 2008 – June 20, 2019

	gridMET
	IDAHO_EPSCOR/GRIDMET
	Humidity, VPD
	January 1, 2010 – June 20, 2019

	PRISM
	OREGONSTATE/PRISM/AN81d
	Precipitation
	January 1, 2008 – June 20, 2019


3.4 Data Analysis for Time Series Tool  
Upon launching the user interface panel, users can select a latitude/longitude point within the study area. This automatically generates time series for NDVI, LST, humidity, VPD, and precipitation for that location. Each parameter is aggregated down to the town level for each town in Cumberland County at the best temporal resolution available for each sensor. All time series are then available for export out of GEE as either a CSV, PNG, or SVG.

3.5 Data Acquisition, Processing, and Analysis for Risk Mapping
Environmental parameter data from the time series tool, specifically Terra MODIS LST and gridMET humidity data, were exported from GEE and ingested into R for processing. Additionally, LST data from Aqua MODIS were also exported from GEE and run through R. Maine CDC tick-borne disease incidence data were downloaded from the CDC and were also ingested into R for processing. Data were processed in R using Just Another Gibbs Sampler (JAGS), a package that implements Bayesian statistics in R.

Data processing for risk mapping end products was conducted by science advisors John Foster and Tess McCabe at Boston University. The science advisors aggregated each environmental parameter based on co-variate type down to yearly temporal resolution to match the CDC yearly tick-borne incidence data. Aggregation methods centered the data on their respective means.

The science advising team used state-space Bayesian models to combine parameters and analyze the data. State-space models allow for modeling a latent variable that is never directly observed; in this case, the latent variable was the “true” number of tick-borne disease cases, or an estimate of the tick-borne disease cases taking into account observational error. In each model, it was assumed that the reported number of tick-borne disease cases is an underestimation of the true value. Each simple state-space model included a data model and a process model. The process model is a statement of how the specified environmental conditions drive LD cases. The data model is a statement about how each dataset informs the latent variable. Multiple datasets were used for temperature in order to better constrain the process model.

Three simple Bayesian models were created: one null model incorporating both LD incidence and population, one model further driven by temperature, and one model driven by humidity. Each model was fit to all individual towns in Cumberland County. The years 2009 to 2016 were used to fit and build the models, while 2017 and 2018 were used for validation. Model performance in the two validation years was measured by a comparison of observed values to predicted values.

[bookmark: _Toc334198730]4. Results & Discussion
4.1 Analysis of Results
[bookmark: _Toc334198734]The supervised classification land cover map was successful in classifying forest into deciduous, mixed and coniferous covers and classifying urban into low, medium, and high density development categories (in addition to the cultivated, water, and barren categories) (Figure 2). The ground truthing visual accuracy assessment resulted in a land cover map accuracy of 86%, which was subsequently refined to improve misclassifications. From the incorporated confusion matrix, the training accuracy for the data was found to be 96.9%. 
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Figure 2. Above is the supervised land cover classification map for Cumberland County, Maine.

The classified land cover types were able to be incorporated into two edge maps. One map displays the land cover classes (the forest cover and the urban cover) overlaid by the forest-urban edge layer (Figure A1). The map also displays the forest and urban buffers used to find the combined edge. The second map illustrates the final forest-urban edge layer; the locations where the buffers touch or overlap is highlighted in blue (Figure 3).
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Figure 3. Shown above is a map of Cumberland County, Maine with the forest-urban edge feature highlighted in blue.

The creation of this edge map allowed for an analysis of the percentage of edge habitat in Cumberland County (Figure 4). For all of Cumberland County (forest, urban, and agriculture covers combined), 19.887% of the land is considered to be edge habitat. When this is subdivided by town, Frye Island, Chebeague Island, and Long Island have the highest percentage of edge features, calculated at 63.21%, 37.89%, and 39.079% respectively (Table A1). This is notable as these areas are small islands that aren’t as populated as cities such as Portland. These small areas that are not dominated by any one land cover type provide many opportunities for humans to come in contact with ticks, as they contain more edge habitat where increased species diversity is followed by increased tick presence. Comparatively, towns such as Baldwin, Sebago, and Pownal have much smaller percentages of edge: 11.82%, 11.89%, and 12.54% (Table A1). These towns tend to have one dominating land cover class, resulting in less edge habitat and thus a smaller edge-related risk of encountering ticks.
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Figure 4. Above is a Cumberland County, Maine displaying the percentages of forest-urban edge area by town. The forest-urban edge layer is highlighted in blue.

For the risk and environmental parameter relationship analyses, a choropleth map was made to display the risk of contracting LD; in this case, risk is defined as the probability of acquiring LD per person at town-level spatial resolution for Cumberland County, as estimated by disease incidence and yearly population in the null model (Figure 5). New Gloucester, North Yarmouth, and Cumberland were found to have the highest modeled LD risk per person in Cumberland County, with probability means of 0.389%, 0.382%, and 0.375% respectively (Table B1). Baldwin, Sebago, Chebeague Island, Long Island, and Pownal had high probabilities between 23% and 50%, however, these values are unreliable due to a high standard deviation combined with suppressed data. Portland, South Portland, and Westbrook had the lowest modeled tick-borne LD risk with probability means of 0.050%, 0.045%, and 0.056% respectively. Omitted towns were not included as the probability of infection and probability of detection were too difficult to separate and the number of model iterations were considered too large in R; so the models did not converge. This could be due to two possible factors: 1) the model was not informative enough, 2) the data used to fit the model did not provide enough constraint (population, observed tick cases, priors, etc.). An uninformative prior was put on the probability of infection as this was an exploratory analysis. A tighter prior for the probability of infection from an expert in the field would likely help model convergence moving forward. Additionally, the null model estimated the latent variable, the “true” number of tick-borne disease cases, for each year per town (Table B2 and B2.1).
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Figure 5. This map of Cumberland County, Maine illustrates the probability of acquiring LD per person at town-level spatial resolution, as estimated by disease incidence and population.

Results from the two parameter driven models showed differing strength of parameter effect on increased disease incidence. The estimated effect of humidity on disease incidence in the 22 successfully processed towns was negligible, with the effect being indistinguishable between either increasing or suppressing LD cases (Table B3). These results indicate that humidity may not strongly drive changes in LD incidence in Cumberland County towns. Theses results may also be due to the aggregation method or model structure.

The estimated relative effect of temperature on LD incidence in Cumberland towns was more substantial than humidity’s influence, with smaller associated error (Figure 6) (Table B4). Raymond, Westbrook, and Cape Elizabeth were found to have the most negative influence, at -0.427, -0.391, and -0.291 respectively, suggesting that as temperature increases LD incidence in these towns is suppressed. Standish, South Portland, and Harpswell were found to have the most positive influence, at 0.404, 0.355, and 0.301 respectively, suggesting that as temperature increases LD incidence in these towns is increased. Long Island had the overall highest influence at 1.896; however, Long Island’s associated error is notably much larger than the other listed towns, making this result less reliable. Many of the towns had a 95% confidence interval that contained 0, suggesting that the direction of the effect could change. Interestingly, Standish, South Portland, and Harpswell are all located adjacent to large bodies of water, potentially influencing this relationship.
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Figure 6. This map illustrates the relative comparative effect of LST on LD incidence in Cumberland County towns. While the overall magnitude of temperature’s effect is small, the magnitude of effect varies when comparing Cumberland towns to each other.

As both Terra and Aqua MODIS LST data were aggregated together for this model and each sensor is assumed to have some degree of associated error in their respective measurements, the model calculated the mean error per town for both Aqua and Terra MODIS LST (Table B5). On average, across the 22 successfully processed towns, Terra MODIS’s associated error was over twice as large as Aqua MODIS’s associated error. Though it should be noted that the standard deviation for Terra MODIS’s associated error also tended to be larger across the towns.

The temperature data model combined Aqua and Terra MODIS accounting for their respective errors and produced an estimated underlying LST measurement per town for 2009 to 2018. Additionally, the latent number of LD cases was calculated per year per town. Data was not analyzed due to time constraints of the term, but is available upon request.

4.2 Possible Errors and Limitations 
Over the course of this project, there were multiple potential errors and limitations presented in data collection and analyses. While collecting ground truthing data points, the number of points collected was limited due to time constraints and the overall size of our study area. There were also issues in confirming the ground truthing points that were collected, further limiting the verification of our land cover map through ground truthing.

The models created for this project were aggregated to annual temporal resolution using methods as descriptive as possible. However, this may not be as descriptive as is needed. These models also work under the assumption that the relationship between climate variables and tick prevalence is the same as the relationship between tick-borne illnesses and these climate variables, which might not be accurate.

The data were modeled at town-level spatial resolution based on where tick-borne illnesses were reported. This is limiting as the town in which the incidence is reported is not necessarily the town where the initial contact with a tick occurred. To get the most accurate representation of which towns provide the highest risk of tick-borne illnesses, it would be beneficial to have data on where tick encounters occur rather than where tick-borne illnesses are reported.

In the creation of the disease risk map, the probability of contracting Lyme was calculated for every town using previous years’ data and Bayesian models. As previously mentioned, some towns, namely Baldwin, Sebago, Chebeague Island, Long Island, and Pownal, had high probabilities between 23% and 50%. These values are unreliable due to a high standard deviation combined with suppressed data.

The spatial resolution of the Landsat 8 data proved to be limiting in classifications for the land cover map. The 30 m spatial resolution made it difficult to differentiate between and determine vegetation types. This makes differentiation between coniferous, deciduous, mixed, and invasive species less reliable and limits the ability to denote invasive species that ticks frequently use for habitat.

4.3 Future Work
[bookmark: _Toc334198735]Possibilities for further research into this subject stem from mitigating initial limitations. Because the resolution of the supervised land cover classification and the edge map was 30 m, the precision of classification and identification of vegetation were limited to that resolution. If the resolution could be improved to a smaller scale, such as 1-5 m, the possibility of distinguishing between species could help better identify areas of high tick encounter risk. 

Additionally, a higher spatial resolution would serve to better understand the relationship between high levels of LD among transportation workers and their proximity to forest-urban edges. Transportation workers are at a higher risk of coming in contact with ticks because they work along roads and areas that tend to coincide with the ‘edge’ between land classified as forest and urban. It would be beneficial to compare edge habitats with tick encounter locations, instead of the locations of reports, to see if there is a higher correlation between edge areas and tick encounter locations. In addition, if improved spatial resolution were available, it would be easier to identify the vegetation that ticks prefer in the edge map.

Currently, the model may not be as informative as possible. Possible future work should include additional covariates. Tighter priors could also provide more specific and accurate outputs for prediction of tick-borne illness risk. Future work could also model more accurate risk maps of tick-borne illnesses by generating or collecting data on where tick encounters occur rather than where tick-borne illnesses are reported.

5. Conclusions
[bookmark: _Toc334198736]The supervised classification land cover map indicates that classification on a county level is effective at identifying land cover types predisposed to tick encounters. Categorizing the land cover types into cultivated, three tree cover types, and three development types allowed for a more informed understanding of tick habitat in Southern Maine. Furthermore, the map also illustrated that tree cover classes were more mixed than expected and impervious surface was a subjective proxy for urbanization.

The edge map is an effective way to represent Cumberland County towns that have a high percentage of edge habitat. The towns with the lowest percent edge are Baldwin, Sebago, and Pownal, while the towns with the highest percent edge are Frye Island, Chebeague Island, and Long Island. High percentage areas are more likely to both collect wildlife that serve as hosts for deer ticks and attract heavy human use; this may impact how much contact humans have with deer ticks and thus with LD. These areas should be targeted for increased mitigation and public awareness.

Based on the risk map created using disease incidence and population, New Gloucester, North Yarmouth, and Cumberland have the highest probability of acquiring LD per person in Cumberland County (this probability being based on the reports of confirmed LD cases). Comparatively, people in Portland, South Portland, and Westbrook have the lowest probability of acquiring LD per person.
Environmental parameter driven models show varying levels of parameter influence on disease incidence. Humidity’s strength of effect on LD incidence in Cumberland County towns was negligible, suggesting that humidity is not highly predictive of tick encounter cases. The effect of temperature on LD incidence was relatively stronger in certain towns, though overall magnitude of effect is still small.

Overall, this project was successful in applying land cover classifications and remotely-sensed environmental data to preliminary tick-borne illness risk assessment efforts. Future research should focus on the simultaneous implementation of structural land cover characteristics and environmental covariates within a single model. Further efforts should also focus on examining the utility of satellite remote sensing at a community and local level.
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7. Glossary
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and biological systems over space and time
GridMET - Gridded Surface Meteorological dataset provided daily humidity and vapor pressure deficit data 
MODIS – MODerate resolution Imaging Spectroradiometer sensor aboard Terra and Aqua used for acquiring land surface temperature data
OLI – Operational Land Imager sensor aboard Landsat 8
PRISM – Parameter-elevation Regressions on Independent Slopes Model daily dataset used for acquiring precipitation data 
GEE – Google Earth Engine, a free, cloud-based geospatial research service used for land cover and edge mapping
GeoTIFF - Georeferenced Tagged Image File Format, used in exporting images from 
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9. Appendices
Appendix A. Edge Results
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Figure A1. Edge map showing the forest, urban, and cultivated land covers. It also displays the lighter-colored buffers along the edge of those land covers. In blue are the areas where forest and urban cover touch or overlap.

Table A1
Percent values of the Forest - Urban edge area from Cumberland County, Maine, calculated by town.
	Town
	Edge (%)

	Baldwin
	11.815

	Bridgton
	17.397

	Brunswick
	20.490

	Cape Elizabeth
	29.251

	Casco
	19.426

	Chebeague Island
	37.890

	Cumberland
	26.604

	Falmouth
	26.319

	Freeport
	23.706

	Frye Island
	63.210

	Gorham
	19.916

	Gray
	18.401

	Harpswell
	33.852

	Harrison
	16.573

	Long Island
	39.079

	Naples
	21.025

	New Gloucester
	15.770

	North Yarmouth
	18.519

	Portland
	14.147

	Pownal
	12.540

	Raymond
	22.503

	Scarborough
	24.534

	Sebago
	11.888

	South Portland
	13.983

	Standish
	16.999

	Westbrook
	19.006

	Windham
	23.720

	Yarmouth
	29.118




Appendix B. Modeling Results

Table B1
Results from the binomial null model.
	Location
	Detection Probability Mean
	Detection Probability Standard Deviation
	Infection Probability Mean
	Infection Probability Standard Deviation

	Baldwin
	0.605874723
	0.374036303
	0.49994972
	0.288673596

	Brunswick
	0.97666108
	0.044495586
	0.001120118
	0.00010816

	Cumberland
	0.506452061
	0.150055619
	0.003751516
	0.001230174

	Falmouth
	0.94212722
	0.090761453
	0.001502214
	0.000239234

	Freeport
	0.876372844
	0.145565562
	0.002040402
	0.000507602

	Gorham
	0.792182201
	0.166189026
	0.001838152
	0.000479835

	Gray
	0.930561525
	0.111478678
	0.001893862
	0.000393861

	Harpswell
	0.976768932
	0.047182043
	0.001185559
	0.000205592

	Naples
	0.947665438
	0.098092896
	0.001321252
	0.000333623

	North Yarmouth
	0.868701044
	0.151675327
	0.003818367
	0.001013149

	Scarborough
	0.520357919
	0.196663148
	0.001145249
	0.000502936

	Sebago
	0.045157257
	0.176066885
	0.302379025
	0.299095519

	South Portland
	0.848956953
	0.174682157
	0.000446506
	0.00015042

	Standish
	0.829726196
	0.181251541
	0.001781934
	0.000591378

	Westbrook
	0.962299143
	0.068617875
	0.000555248
	8.61E-05

	Windham
	0.966350413
	0.059044848
	0.001655922
	0.000171756

	Yarmouth
	0.954978027
	0.079704583
	0.001300423
	0.000214048

	Chebeague Island
	0.091215239
	0.24264839
	0.287404593
	0.294102796

	Long Island
	0.106856406
	0.259699474
	0.286503423
	0.294118445

	Pownal
	0.260735337
	0.358046587
	0.239248208
	0.27827976

	Cape Elizabeth
	0.65783984
	0.221402831
	0.00212062
	0.000915922

	Casco
	0.927787163
	0.121833758
	0.00173603
	0.000490939

	New Gloucester
	0.596533571
	0.281835282
	0.003889403
	0.003265275

	Portland
	0.828980282
	0.168389608
	0.000501971
	0.000138502

	Raymond
	0.948718318
	0.095748799
	0.002067742
	0.00043104



Table B2
Results from the null model for estimated latent variable.
	Location
	2009 Mean
	2010 Mean
	2011 Mean
	2012 Mean
	2013 Mean

	Baldwin
	0.393980096
	762.4188218
	760.4251452
	759.922494
	771.4219124

	Brunswick
	27.46666554
	15.58453732
	25.58845083
	19.59198867
	25.59085236

	Cumberland
	28.31264191
	24.50062767
	27.77672325
	23.83567476
	29.88550683

	Falmouth
	20.09975284
	9.163430477
	20.16601623
	23.15924891
	13.18197707

	Freeport
	18.47262481
	11.49879937
	11.50169814
	19.48138448
	14.52251784

	Gorham
	27.23518292
	31.45538269
	33.51933805
	31.5478527
	31.64122467

	Gray
	10.62460011
	12.30428581
	9.319835945
	9.321613139
	21.33080709

	Harpswell
	11.04643225
	3.146541845
	6.146328642
	6.145129952
	5.144162299

	Naples
	5.052349192
	2.351413056
	4.352008483
	4.354460244
	7.357451565

	North Yarmouth
	17.49465857
	7.267216096
	14.27513918
	10.28345029
	19.30140014

	Scarborough
	18.11379786
	16.94997803
	19.00562933
	21.96595211
	21.95901614

	Sebago
	5.001452459
	519.5907858
	521.3106766
	525.5386011
	529.8695752

	South Portland
	11.96361627
	5.254637822
	11.25764721
	13.29279
	15.31805628

	Standish
	13.55440088
	11.94343476
	21.96874708
	18.01554169
	30.0237047

	Westbrook
	15.41486671
	6.427390573
	10.42663281
	6.428996753
	19.43217331

	Windham
	28.84086857
	13.07157866
	26.0818059
	26.08498566
	35.09533321

	Yarmouth
	13.45030657
	4.585970524
	7.581084059
	12.58264991
	13.58809356

	Chebeague Island
	104.3300185
	101.4535891
	97.79338988
	100.01711
	99.44344114

	Long Island
	55.29496394
	61.88414037
	65.67939633
	66.46889143
	66.18209188

	Pownal
	399.0586875
	362.6797055
	352.6448285
	351.4550245
	352.8858524

	Cape Elizabeth
	14.47239665
	17.13012063
	17.09881868
	19.04821968
	19.15322347

	Casco
	6.288193182
	5.638775468
	3.647225401
	8.654995019
	6.65137617

	New Gloucester
	7.227282883
	17.49406249
	23.53937351
	16.64893208
	28.79663384

	Portland
	19.76255038
	27.10529372
	29.11263295
	30.16009243
	37.15769102

	Raymond
	5.051346738
	7.607393459
	9.611820154
	6.621011774
	12.61955557



Table B2 (Continued)
	Location
	2014 Mean
	2015 Mean
	2016 Mean
	2017 Mean
	2018 Mean

	Baldwin
	780.4186461
	783.4189248
	794.9178299
	794.9150093
	794.9227166

	Brunswick
	28.59357492
	18.59687462
	26.60024381
	23.3284977
	23.32827883

	Cumberland
	31.16561644
	30.38931781
	27.49771174
	28.91660802
	28.91713333

	Falmouth
	24.19863463
	10.20148632
	18.18033012
	17.06175851
	17.06362974

	Freeport
	21.55829632
	17.5335275
	16.5598014
	16.47823086
	16.47905253

	Gorham
	35.71553879
	24.83126017
	26.93636151
	32.04084321
	32.04059542

	Gray
	17.34370031
	15.3580474
	19.36501401
	15.3993311
	15.39942848

	Harpswell
	4.147286398
	3.143780142
	10.14347446
	5.51169937
	5.511000247

	Naples
	5.360938804
	6.36290907
	5.366551516
	5.338212976
	5.337870372

	North Yarmouth
	17.33131689
	14.33496603
	13.36036337
	14.18815859
	14.1901118

	Scarborough
	26.18086238
	20.50115834
	26.24326283
	22.21061799
	22.20946567

	Sebago
	535.5037484
	538.2387237
	543.9738257
	543.9825849
	543.9788579

	South Portland
	8.305549214
	14.39288618
	11.37048624
	11.73717351
	11.73758701

	Standish
	16.03423694
	12.13283652
	15.17427651
	18.62699641
	18.62606456

	Westbrook
	9.436303432
	7.44176445
	8.445172312
	10.11030991
	10.11037223

	Windham
	35.10568526
	28.12886096
	38.14054407
	30.00594795
	30.00586375

	Yarmouth
	12.59096862
	8.581259633
	15.59160205
	10.98076104
	10.97902211

	Chebeague Island
	99.15569591
	99.8012724
	99.72809446
	100.8790879
	100.8790714

	Long Island
	65.60888544
	64.53688807
	64.74795364
	65.60967225
	65.60944972

	Pownal
	356.5326676
	359.468343
	361.7586346
	367.7985046
	366.2906284

	Cape Elizabeth
	25.18823352
	19.16684885
	16.15259657
	19.16598352
	19.16744195

	Casco
	7.659284828
	6.656455144
	6.666099454
	6.78618264
	6.785788057

	New Gloucester
	22.78535009
	21.04558403
	23.15538256
	22.70872892
	22.71179521

	Portland
	36.22039512
	37.23477554
	37.34811188
	34.34943715
	34.34599309

	Raymond
	14.62068817
	7.619317963
	5.615278703
	9.313396804
	9.311849721



Table B2.1 
Standard deviation of the results from the null model for estimated latent variable.
	Location
	2009 Standard Deviation
	2010 Standard Deviation
	2011 Standard Deviation
	2012 Standard Deviation
	2013 Standard Deviation

	Baldwin
	0.393980096
	440.5135211
	439.3629831
	439.0765635
	445.7117809

	Brunswick
	27.46666554
	1.454235425
	1.462416575
	1.470147204
	1.468004891

	Cumberland
	28.31264191
	9.353930606
	9.517532695
	9.552691594
	9.581538617

	Falmouth
	20.09975284
	2.409439594
	2.414018778
	2.401792392
	2.444252278

	Freeport
	18.47262481
	3.985402534
	3.989001046
	3.959508566
	4.019336527

	Gorham
	27.23518292
	8.000760991
	8.066143838
	8.0956156
	8.189012644

	Gray
	10.62460011
	2.902808586
	2.934993205
	2.938814351
	2.958054289

	Harpswell
	11.04643225
	0.516366693
	0.515762527
	0.512998357
	0.510659539

	Naples
	5.052349192
	1.120611978
	1.122707231
	1.129461506
	1.137519399

	North Yarmouth
	17.49465857
	3.623055866
	3.634444799
	3.647062539
	3.672601717

	Scarborough
	18.11379786
	9.888733193
	9.933878484
	9.900600667
	9.895732402

	Sebago
	5.001452459
	514.4379542
	515.8525463
	520.0279863
	524.608183

	South Portland
	11.96361627
	3.813317737
	3.817129983
	3.872182177
	3.913419197

	Standish
	13.55440088
	5.921748779
	5.957199886
	6.02313025
	6.03573426

	Westbrook
	15.41486671
	1.126801473
	1.125119705
	1.131014635
	1.138240447

	Windham
	28.84086857
	2.357266983
	2.377058992
	2.383041863
	2.403701195

	Yarmouth
	13.45030657
	1.4674061
	1.456895308
	1.460392193
	1.472327138

	Chebeague Island
	104.3300185
	104.020299
	100.5818568
	102.5474267
	101.9610309

	Long Island
	55.29496394
	63.7291495
	67.94132149
	68.43670354
	68.1411858

	Pownal
	399.0586875
	423.1538086
	410.3680305
	408.9800564
	410.6454679

	Cape Elizabeth
	14.47239665
	8.512231826
	8.485575896
	8.42707113
	8.541956829

	Casco
	6.288193182
	1.73880252
	1.760740717
	1.779654522
	1.770525533

	New Gloucester
	7.227282883
	18.31329181
	18.38619084
	18.54061616
	18.74980614

	Portland
	19.76255038
	9.242004932
	9.249305352
	9.308094217
	9.305315319

	Raymond
	5.051346738
	1.705012418
	1.719262969
	1.742458602
	1.736750102



Table B2.1 (Continued)
	Location
	2014 Standard Deviation
	2015 Standard Deviation
	2016 Standard Deviation
	2017 Standard Deviation
	2018 Standard Deviation

	Baldwin
	450.9087016
	452.6392934
	459.2760362
	459.2806766
	459.2795252

	Brunswick
	1.474017401
	1.480285906
	1.487901441
	5.327283521
	5.326638602

	Cumberland
	9.746936732
	9.87958526
	9.944463669
	10.89559757
	10.89715763

	Falmouth
	2.474992628
	2.48065787
	2.441658004
	4.941200134
	4.942160741

	Freeport
	4.072909582
	4.036351094
	4.074988314
	5.767256481
	5.766668285

	Gorham
	8.263075933
	8.381951722
	8.486806171
	10.09866574
	10.09594643

	Gray
	2.983736011
	3.013762775
	3.027412542
	5.062843384
	5.062689088

	Harpswell
	0.518044118
	0.509210432
	0.508674037
	2.533549291
	2.532886108

	Naples
	1.147348417
	1.152727884
	1.161775761
	2.673491139
	2.673947234

	North Yarmouth
	3.716810932
	3.722393801
	3.75906316
	5.319905437
	5.320325765

	Scarborough
	10.07044401
	10.31826149
	10.11784778
	10.83070021
	10.82913145

	Sebago
	529.8973674
	532.5994447
	538.2700095
	538.2762781
	538.2851149

	South Portland
	3.892469946
	4.028608088
	3.994074129
	5.230122453
	5.230914133

	Standish
	6.050794946
	6.190659206
	6.249144767
	7.537258367
	7.536749738

	Westbrook
	1.146845141
	1.158544418
	1.166323224
	3.544272652
	3.544694744

	Windham
	2.425092424
	2.470725275
	2.493733086
	6.29664227
	6.295816763

	Yarmouth
	1.478454493
	1.457096676
	1.480206643
	3.773081995
	3.771514283

	Chebeague Island
	101.6668364
	102.6420721
	102.253967
	103.4316611
	103.4310465

	Long Island
	67.55365179
	66.76284029
	66.67145637
	67.55334537
	67.55459005

	Pownal
	417.0027762
	418.1218501
	420.9507168
	425.6693657
	426.2346434

	Cape Elizabeth
	8.57001252
	8.549658014
	8.540981191
	9.355369465
	9.36554

	Casco
	1.792499535
	1.783283911
	1.804068013
	3.234187947
	3.23321945

	New Gloucester
	18.74213911
	19.10020932
	19.28098409
	19.65093235
	19.65401946

	Portland
	9.386377438
	9.39508387
	9.543544895
	11.13713688
	11.13748345

	Raymond
	1.742783249
	1.73603222
	1.726927913
	3.611310416
	3.613371798



Table B3
Results of the humidity analysis.
	Location
	Relative Strength of Effect
	Standard Deviation

	Baldwin
	0.003421053
	5.001809274

	Cape Elizabeth
	-0.039372562
	5.002408929

	Casco
	-0.00971758
	5.000609367

	Freeport
	-0.027872382
	5.000881566

	Gray
	-0.07453723
	5.00127215

	Harpswell
	0.016741887
	5.000077974

	Naples
	-0.016942001
	5.000337831

	Raymond
	-0.036443912
	5.000122829

	Westbrook
	-0.082017723
	5.000350843

	Windham
	-0.101199441
	5.002016852

	Yarmouth
	-0.023450972
	5.002189155

	Bridgton
	-0.000422876
	5.000387907

	Long Island
	-0.000022966
	4.999766392

	New Gloucester
	-0.03816488
	5.000742487

	Brunswick
	-0.044734055
	4.995204943

	Cumberland
	-0.028826165
	4.987499329

	Falmouth
	-0.005485654
	5.001950408

	Portland
	-0.018212802
	4.92650453

	Pownal
	0.009377804
	5.001646337

	Scarborough
	-0.032707221
	4.999564708

	South Portland
	-0.018831587
	5.005093628

	Standish
	-0.069878732
	4.99817189



Table B4
Results of the temperature analysis.
	Location
	Relative Strength of Effect
	Standard Deviation

	Baldwin
	0.001299798
	5.001798179

	Cape Elizabeth
	-0.290545388
	0.307872795

	Casco
	0.099343287
	0.198470198

	Freeport
	-0.135524567
	0.194537668

	Gray
	-0.020435169
	0.172556048

	North Yarmouth
	-0.276334672
	0.170671858

	Pownal
	0.174865681
	0.538011209

	Raymond
	-0.427356017
	0.18833614

	Scarborough
	-0.062151475
	0.226783656

	Westbrook
	-0.391350598
	0.201725887

	Windham
	-0.029081823
	0.106259718

	Yarmouth
	0.106681105
	0.35534615

	Brunswick
	0.100923011
	0.079735306

	Cumberland
	0.091201005
	0.132200613

	Falmouth
	0.296530388
	0.15548892

	Gorham
	-0.028141831
	0.082819125

	Harpswell
	0.301069089
	0.270665001

	Long Island
	1.896178873
	4.188726116

	Naples
	0.199464176
	0.198548276

	Portland
	0.078942231
	0.085139394

	South Portland
	0.355729628
	0.186868626

	Standish
	0.403709189
	0.151351395
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