

National Aeronautics and Space Administration

WEEKS BAY WATER RESOURCES

Using NASA Earth Observations to Evaluate Changes in Water Quality in the Weeks Bay Watershed

Vanessa Van Auken

Dillon Blankenship

Michelle Carver

Ara Metz

DEVELOP

Alabama – Mobile | Spring 2019

Study Area and Period

Weeks Bay Watershed

Sub-estuary of Mobile Bay in South Alabama

Area
 498.425 km²

Time period
January 2014 to June 2018

Image Credit: Weeks Bay Water Resources Team

Community Concerns

Water Quality **Degradation**

Rapid Urban Development

Land Cover **Conversion**

Project Partner

 Alabama Department of Conversation and Natural Resources (ADCNR), Weeks Bay National Estuarine Research Reserve (NERR)

N ATIONAL E STUARINE R E S E A R C H R E S E R V E S Y S T E M

Objectives

Identify sub-watersheds of special concern for prioritizing conservation efforts aimed at improving water quality in Weeks Bay **Demonstrate** how to collect data from NASA Earth observations to contribute to the knowledge base of the Weeks Bay NERR **Conduct** a comparative analysis of a previous SWAT model derived from *in situ* data to a SWAT model informed primarily by NASA Earth observations

Soil & Water Assessment Tool Model

Image Credit: swift

Methodology

Data Processing from SWAT

Example of SWAT Output File

A1	L		r E	>	<	\checkmark	f_{x}	1												
	А		В			с		D		E		F			G			н		
1		1																		
2	SWAT	De	c 23 20)16	VEF	2016	/Rev	664								0/	0/	0	0:	0:0
3																				
4	Gener	ral I	nput/	Out	put s	ectio	n (fil	e.cio	:											
5	3/26/2019 12:00:00 AM ARCGIS-SWAT interface AV																			
6																				
7																				
8																				
9	SUB	G	GIS MO	DN	ARE	Akm2	PRE	CIPm	im SN	IOME	ELTr	nm	PE	Tmm	n E	Tm	m	SV	۷m	nm
10	BIGSUB	1	0	1.24	408E	+02 0	.811	E+02 (0.000	E+00	0.63	80E+0	00.	455E	+00	0.16	55E	+03	0.4	139E-
11	BIGSUB	2	0	1.94	325E	+01 0	.811	E+02 (0.000	E +00	0.63	80E+0	00.	491E	+00	0.21	LOE	+03	0.4	109E-
12	BIGSUB	3	0	1.12	380E	+02 0	.811	E+02 (0.000	E +00	0.63	89E+0	00.	483E	E +00	0.17	71E	+03	0.3	353E-
13	BIGSUB	4	0	1.14	632E	+02 0	.811	E+02 (0.000	E +00	0.63	89E+0	00.	442E	E +00	0.18	35E	+03	0.4	35E-
14	BIGSUB	5	0	1.11	980E	+02 0	.811	E+02 (0.000	E +00	0.64	40E+0	00.	451E	E+00	0.22	21E	+03	0.3	98E-
15	BIGSUB	6	0	1.21	234E	+02 0	.811	E+02 (0.000	E +00	0.64	40E+0	00.	429E	E +00	0.24	10E	+03	0.3	36E-
16	BIGSUB	7	0	1.16	887E	+02 0	.7738	E+02 (0.000	E +00	0.64	41E+0	00.	464E	E +00	0.25	54E	+03	0.2	262E-
17	BIGSUB	8	0	1.10	966E	+02 0	.7738	E+02 (0.000	E +00	0.64	41E+0	00.	485E	E +00	0.22	21E	+03	0.3	62E-
18	BIGSUB	9	0	1.87	054E	+00 0	.7738	E+02 (0.000	E +00	0.64	41E+0	00.	402E	E +00	0.18	32E	+03	0.4	12E
19	BIGSUB	10	0	1.2	2137	E+00 (0.773	E+02	0.000	E+00	0.6	41E+(0 00	.359	E+00	0.1	898	E+03	0.4	431E
20	BIGSUB	11	0	1.24	4649	E+02 (0.641	E+02	0.000	E+00	0.6	41E+(0 00	.417	E+00	0.2	098	E+03	0.	381E
21	BIGSUB	12	0	1.13	3902	E+02 (0.773	E+02	0.000	E+00	0.6	41E+(0 00	.372	E+00	0.2	18	E+03	0.4	418E
22	BIGSUB	13	0	1.13	2623	E+02 (0.773	E+02	0.000	E+00	0.6	42E+(0 00	.426	E+00	0.1	83	E+03	0.4	450E

Inputs from SWAT model	Process	Output
Organic Nitrogen, Surface Nitrogen, Groundwater Nitrate, Lateral Nitrate	Sum of all	Total Nitrogen in kg/ha
Organic Phosphorus, Soluble Phosphorus, Mineral Phosphorus	Sum of all	Total Phosphorus in kg/ha

Earth Observations

GPM IMERG Precipitation Data

Landsat 7 ETM+

Surface Reflectance

SRTM

Digital Elevation Model

Ancillary Datasets

Data Used for SWAT Input

- Digital Elevation Model (DEM): Shuttle Radar Topography Mission (SRTM) 30 m DEM
- Soil Data: United States Department of Agriculture & Natural Resources Conservation Service (USDA-NRCS)
- Weather Data: Texas A&M SWAT Database
- Land Cover: National Land Cover Dataset 2011, Multi-Resolution Land Characteristics (MRLC) Consortium

Data Used for Validation

- In Situ Water Quality Measurements: Alabama Department of Environmental Management (ADEM)
- Water Quantity: USGS Stream Gauge Data

Data Used for Comparison

Inputs for previous SWAT Model: Thompson Engineering Firm

End Products

Sub-Basin Water Quality Impairment Risk Map

> Comparative analysis report of NASA EO-derived SWAT to non-NASA outputs

> > Weeks Bay NERR SWAT tutorial

Sub-Basin Water Quality Impairment Risk

Time-Lapse of Monthly Totals with VizSWAT

Video Credit: Weeks Bay Water Resources Team

Validation – Magnolia River

Validation – Fish River

Validation – Fish River

Watershed Discharge

	DEVELOP AL	Thompson Engineering				
	MODEL BUILDING					
DEM	SRTM 30 m	USGS NED/3DEP 10 m				
Land Cover	NLCD 2011	NLCD 2011 National Cropland Data (NCLD) layer 2011				
Soil	SSURGO	SSURGO				
Precip	GPM IMERG	Parameter-elevation Regressions on Independent Slopes Model (PRISM)				
Temperature	SWAT Weather Database	PRISM				
Stream Network	Delineated in SWAT	National Hydrography Dataset (NHD) v2				
Atmospheric Deposition	N/A	National Atmospheric Deposition Program (NADP)				
	CALIBRATION					
Daily Streamflow	N/A	USGS Gauge Stations				
Water Quality Data	N/A	Alabama Department of Environmental Monitoring (ADEM)				

2017 Modeled Sediment Yield

Image Credits: Thompson Engineering, Weeks Bay Water Resources Team

2011Phosphorus Yield Thompson Model

2017 Modeled Phosphorus Yield

Image Credits: Thompson Engineering, Weeks Bay Water Resources Team

2011 Nitrogen Yield Thompson Model

2017 Modeled Nitrogen Yield

Image Credits: Thompson Engineering, Weeks Bay Water Resources Team

Limitations

- Uncalibrated model
- Small study area
- Temporal range of GPM IMERG
- Study period data not widely available
 - Stream gauge
 - Water quality
 - NLCD

Future Work

Calibrate model with SWAT-CUP

Further validation

- Build model with
 - More sub-basins ~100
 - Updated NLCD, USDA NCDL, or NOAA C-CAP
 - Separate Fish and Magnolia Watersheds
 - Longer precipitation history
- Could incorporate more ground data and examine more output parameters
 - > Water treatment facility inputs, bacteria, pesticide use, & etc.

Conclusion

- Our simple model successfully identified sub-basins of concern for improving water quality.
- Further calibration and validation would improve the model and increase its utility for modeling water quality parameters throughout the Weeks Bay Watershed.
- This kind of modeling approach could be valuable to the Weeks Bay NERR in its efforts to manage and protect the estuary.
- NASA Earth observations could fill in gaps in the Weeks Bay NERR's current monitoring program.

ACKNOWLEDGEMENTS

- > Dr. Scott Phipps, Weeks Bay National Estuarine Research Reserve
- Sarah Johnston, Weeks Bay National Estuarine Research Reserve
- > Angela Underwood, Weeks Bay National Estuarine Research Reserve
- **Eric Brunden**, Weeks Bay National Estuarine Research Reserve
- > Joe Spruce, Science Systems and Applications, Inc.
- **Dr. Kenton Ross**, NASA DEVELOP
- Dr. Ibrahim N. Mohammed, Science Applications International Corporation
- Bernard H. Eichold II, M.D., Dr. P.H., Mobile County Health Department
- Madison Murphy, NASA DEVELOP
- Kathrene Garcia, NASA DEVELOP

This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations.

