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1. Abstract

As a largely snowmelt-fed watershed, Utah’s Fremont River Basin provides year-round irrigation for approximately 16,000 acres of agricultural areas, including historic orchards and pastures maintained by Capitol Reef National Park (CARE). However, forecasts for seasonal water availability within the basin based on in situ snowpack data have been unreliable compared to water use allocations in the past. For this reason, a more robust method was required to provide accurate water availability assessments that help CARE plan future water allocations more effectively. Multiple NASA Earth observations and in situ data were employed to derive key trends and data insights for snowmelt and relevant climate variables across the watershed. Furthermore, a forecasting tool that predicts seasonal streamflow in the Fremont River Basin was created using machine learning models. The results of the snowmelt and climate analyses along with the forecasting tool will inform water resource management and enhance future irrigation allocation plans at CARE.
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2. Introduction

2.1 [bookmark: _Toc334198721]Background Information
With a drainage area of over 4,900 square kilometers, the Fremont River Basin (Figure 1) plays a crucial role in supplying water to sustain year-round wildlife, natural vegetation, and approximately 16,000 acres of agricultural areas in the semi-arid regions of Utah (National Park Service, 2004). The Fremont River is predominantly fed by snowmelt from Thousand Lake Mountain. Due to low groundwater percolation, the Fremont River depends primarily on surface water (Fisk, 2018). Descending from high-relief areas of 11,000 feet to the low deserts at 5,000 feet, the perennial river courses through the Capitol Reef National Park (CARE) down south and heads east to the cities of Bicknell, Caineville, and Hanksville before converging with the Dirty Devil River, a tributary of the Colorado River (Provo Area Office, 2017). Aside from downward flow, the Fremont River is also captured upstream in three reservoirs—Fish Lake, Johnson Valley Reservoir, and Mill Meadow Reservoir—for irrigation purposes (National Park Service, 2004). 
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Figure 1. Study area map of the Fremont River Basin, Utah (Landsat GLS2010, October 12 2017)
Globally, semi-arid environments tend to depend on snowmelt for year-round water resources (Rodriguez, Ohlanders, & McPhee, 2014). In the western United States, snow comprises approximately 50% of total annual precipitation (Jin & Miller, 2007). In particular, annual snowmelt contributions to streamflow in Utah have shown decreasing trends, with snow melting earlier over the past 50 years (EPA, 2016). With restricted water availability downstream, ecosystems and communities largely dependent on the Fremont River Basin water supply are threatened (EPA, 2016). This is particularly true for ranches and irrigated farms, which account for up to 80% of water usage in Utah (EPA, 2016). As such, forecasting snowmelt rates and streamflow amounts have become crucial information for officials to effectively manage water resources and reduce risk. 

Previous literature has highlighted the feasibility of modeling streamflow within snow dominant water systems based on annual snowmelt in high elevation environments, such as the Sierra Nevada mountains (Choi, 2015). In particular, recent research has increased attention towards the practicality of utilizing machine learning algorithms in remote sensing and climate modelling (Rasouli, Hsieh, & Cannon, 2012). A recent study was successful using machine learning to predict natural flow in the Sacramento Watershed under dry conditions (Magnuson-Skeels, 2016). 

A two term project, the first term conducted analyses on snow cover area change, revealing decreasing snow cover trends over time. Subsequently, they developed the SNowmelt Observational Watershed Model (SNOW-M), which was adapted for the Fremont River Basin from the Modified Snowmelt-Runoff Model (M-SRM) utilized by the Spring 2014 Chile Water Resources team at NASA Langley Research Center. The model presented limited results in terms of streamflow predictions, indicating high mean absolute error between simulated streamflow versus actual streamflow. 

2.2 Project Partners & Objectives
The NASA DEVELOP Fremont River Basin Water Resources team partnered with the National Park Service’s Capitol Reef National Park and Northern Colorado Plateau Network to form the Fremont River Basin project. CARE currently relies on SNOTEL monitoring stations to observe snowpack and snowmelt runoff. Due to their elevation similarity, there is a lack of data pertaining to snowpack in lower relief regions of the basin. In addition, SNOTEL data comprise of only two point locations of the basin and cannot speak for regional patterns. Thus, SNOTEL alone is inadequate information for forming well substantiated decisions on expected streamflow values. In addition, the Natural Resources Conservation Service (NRCS) creates forecasts for the Dirty Devil River downstream of CARE but does not predict streamflow for the Fremont River upstream. The Utah Division of Water Rights is requesting reductions in irrigation allotments in response to recent observations of lower streamflow values. 

To better plan irrigation allotments and more accurately predict water supply, the partners requested a forecasting tool that can reliably predict streamflow into the park. Comparing the performance accuracy of SNOW-M to machine learning algorithms, the machine learnings models yielded more accurate streamflow predictions. Additionally, machine learning algorithms were a more suitable fit for the project as they can be flexible to various data inputs while still providing reliable predictions. This met the partners’ desires to have a reproducible tool that can potentially predict streamflow in other basins in the future. 

As such, the focus of the project involved constructing a Long Short-Term Memory (LSTM) model, a type of Recurrent Neural Network (RNN), which took in NASA Earth observations and in situ data and used the RNN framework to subsequently derive streamflow predictions. Furthermore, another objective was to develop a user-friendly software that employs the LSTM model architecture. The software was named the Streamflow Prediction & Assessment Model (SPAM). With SPAM, users can train new LSTM models for a basin of their choice and generate streamflow predictions. Supplementary objectives included a SPAM User Manual to help users navigate the software as well as an Exploratory Data Analysis (EDA) report to inform partners on recent trends between variable interactions within the basin.
[bookmark: _Toc334198726]3. Methodology

3.1 Data Acquisition 
Multiple data sources were aggregated in order to capture key variables, trends, and relationships and served as inputs into the LSTM model. Almost all data covered the water years of 2000 to 2017 with daily temporal resolution. The one exception was the Fish Lake SNOTEL station since it was not in commission until 2010.

	Name
	Data Type
	Products
	Source

	MOD10A1 Terra
	Earth observation
	Snow Cover Daily L3 Global 500m Grid
	Hosted on Google Earth Engine

	MOD11A1 V006 Terra
	Earth observation
	Land Surface Temperature and Emissivity Daily Global 1km
	Hosted on Google Earth Engine

	PERSIANN-CDR
	Earth observation
	Precipitation, Daily 0.25 arc degrees
	Hosted on Google Earth Engine

	LiDAR derived DEM
	Aerial LiDAR imagery
	Elevation, 0.33 arc-second resolution (10m)
	USGS National Elevation Dataset

	Air temperature

	Derived in situ
	Low elevation air temperature
	PRISM

	Black Flat SNOTEL
	In situ
	Daily Snow Water Equivalent (SWE), precipitation, air temperature
	USDA, hosted on NRCS

	Fish Lake SNOTEL
	In situ
	Daily Snow Water Equivalent (SWE), precipitation, air temperature
	USDA, hosted on NRCS

	Bicknell Stream Gauge
	In situ
	Daily streamflow
	USGS

	Temperature lapse rate
	In situ
	Temperature lapse rate
	PRISM, USDA


Table 1. All Earth observation and in situ data acquired for constructing the LSTM model (Appendix A1 contains a detailed version of the data table)

3.1.1 Earth observations
Earth observations were essential to this project because they provide region-wide high-quality data per pixel as opposed to in situ data observed at one or few specific points. All Earth observation were hosted on Google Earth Engine and made readily available for straightforward data processing. 

MODIS Version 6 data, MOD10A1 MODIS/Terra Snow Cover Daily L3 Global 500m Grid, are carried aboard the Terra satellite and have recorded daily global land surface temperature and emissivity data since 2000. This product provides daily global snow coverage based on Normalized Difference Snow Index (NDSI). Each pixel has a spatial resolution of 500 m and displays a value ranging from 0 to 100 to represent fractional snow cover. Compared to its sister satellite Aqua, Terra’s snow cover area data provided greater temporal consistency and completeness since the L3 band of Aqua has experienced malfunctions in the past. 

In addition, daily land surface temperature from the same MODIS product line, MOD11A1.006 Terra Land Surface Temperature and Emissivity Daily Global 1 km, was selected to estimate the mean land temperature of each elevation zone within the study area. Day time data were selected over night time data since the former generally overlaps better with snowmelt time frames.

Daily precipitation data were obtained from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks, NOAA Climate Data Record (PERSIANN-CDR). PERSIANN-CDR was determined to be the most appropriate choice given that alternatives such as Global Precipitation Measurement (GPM) did not cover the study time interval, while Tropical Rainfall Measuring Mission was designed and optimized for tropical regions. A recent study suggests that, above a certain elevation threshold, amount of spring snowpack may correlate more to amount of annual precipitation than temperature. Moreover, temperature can affect the amount of snowpack as a function of elevation (Scalzitti, Strong, & Kochanski, 2016).

Finally, 0.33 arc-second resolution LiDAR derived DEM was acquired from the USGS National Elevation Dataset 3D Elevation Program encompassing elevation information for the Fremont River Basin. This was an appealing choice due to the data’s high spatial resolution of approximately 10 m. Elevation zones are also associated with distinct ecosystems. As a result, the LSTM model assessed basin regions and considered elevation and elevation by-products. 

3.1.2 In Situ Data
Two SNOTEL weather stations located in the Fremont River Basin record daily SWE, precipitation, and temperature data. They are found in Black Flat and Fish Lake at elevations of 2,869 meters and 2,682 meters respectively. Data were acquired via the NRCS database, part of the USDA (USDA, 2018). In situ data provided by SNOTEL were used to help reveal ground truth information at two point locations where some of the heaviest snowfalls in the basin occur. The data are suitable complements to the Earth observation data, which expand beyond point data because they have the powerful capability to derive data for every pixel in the study area.

Three stream gauge sensors, Fish Lake, Bicknell, and Caineville, are located at key junctions along the Fremont River and record daily streamflow. The partners were particularly interested in the Bicknell stream gauge since it is closely located upstream of the CARE, capturing streamflow amounts in the main river before it runs directly into the park. Streamflow predictions at this gauge would provide the partners a proactive understanding of total water availability for the park and can help guide future water allocation efforts. As such, historical daily streamflow data for the Bicknell stream gauge were acquired via the USGS Water Data database (USGS, 2018). This served as the target variable for the LSTM model.

3.1.3 Additional Variables
Additional variables included daily air temperature data at low elevations of the Fremont River Basin and temperature lapse rate. With SNOTEL temperature data pertaining to high elevation areas, air temperature at lower elevations must also be considered. Thus, daily mean air temperature data at low elevations and temperature lapse rate help consider the condition of the whole basin. Daily mean air temperature data were downloaded from the PRISM Climate Group at Oregon State University (PRISM, 2018). Parameters for this data included the study period from 2000 to 2017, a point location with (38.2759, -110.4111) geo-coordinates, and an elevation of 1,617 meters.

Given that the Fremont River Basin is a high-relief area, temperature lapse rate is a valuable variable because it considers the rate of temperature change across elevation gradients. It was derived by combining daily air temperature data in low elevation zones and high elevation zones of the Fremont River Basin. With SNOTEL data at 2,869 meters and PRISM data at 1,617 meters, differences in their daily air temperatures per day were divided by their elevation difference.

	(1)

3.2 Data Processing
After acquisition, all Earth observations and in situ data were processed in various procedures before they were appended into a single comma-separated values file ready to construct and train the LSTM model.



3.2.1 Earth Observations and Satellite Imagery
Earth observations data obtained from Google Earth Engine and LiDAR DEM imagery underwent several processing steps after initial acquisition. R scripts were created to process the raw data.

In order to derive the exact area of the Fremont River Basin, the previous term acquired multiple LiDAR derived DEM tiles, then joined and reprojected to the WGS 1984 UTM projected coordinate system. ArcSWAT delineated the watershed and corresponding sub-basins based on elevation gradients and subsequent flow regimes, dividing the study area into three elevation zones at 500-meter spatial resolution. These elevation zones were used as the basis for partitioning data from Earth observations in order to examine the relationship between climate variables and unique elevation areas. The data were uploaded and imported to Google Earth Engine before processing the Earth observations data.

To process Terra MODIS snow cover map data, areas outside each elevation zone were masked out followed by pixel value summation. After unit conversion, the sum represented total area of snow cover within each elevation zone. As for Terra MODIS land surface temperature, regional average temperature was calculated along with a fraction of valid pixels since the maps contained occasional null values. The fraction was obtained by dividing the count of nonzero pixels by the count of all pixels in an elevation zone. Similarly, PERSIANN-CDR precipitation maps were clipped to each elevation zone, and precipitation average was calculated by taking the mean of all pixel values within a zone. 

All three data sources were mostly complete in data, and any missing values encountered were interpolated. Missing snow cover area and land surface temperature data were obtained by taking the average of previous two days and following two days. Precipitation data were less dependent on previous days, so missing values were replaced by the average value for the same day of all other years within the study time interval. 

3.2.2 In Situ Data
Overall, there was less processing required for in situ data as they were readily downloadable and mostly complete. After downloading, data were subset and ordered according to the USGS prescribed water year, from October 1st to September 30th, for the study period years of 2000 to 2017.

Missing data from the Black Flat SNOTEL included air temperature before June 5, 2006. For the Fish Lake SNOTEL, all data before October 1, 2010 were missing. This is because the sensors were not commissioned until said dates. As such, data were interpolated for both cases. Missing air temperature data for both SNOTEL sites were filled in by taking in the average of all corresponding days in latter years when data were present. For example, air temperature for Day 1 of water year 2000 would be calculated by averaging air temperature for Day 1 of water years 2010, 2011, and so forth for all years of data that are available. As for the missing precipitation and SWE values before October 1, 2010 in the Fish Lake SNOTEL, corresponding data for the same date from the Black Flat SNOTEL were inferred directly. Precipitation and SWE values were observed to be very similar for both sites in the years where data are available, possibly due to their similarity in elevation, hence it is believed that substituting values from one site into the other was sufficient.
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Figure 2. Flowchart of the steps taken to train and evaluate the LSTM model for streamflow prediction

The target variable, also known as Y, is streamflow at the Bicknell gauge. Predictor variables, also denoted as X, are all other variables used to predict Y and served as the training data for the model. Equation 2 gives a high-level overview of how variable relationships will be plotted for algorithms.

				 (2)

A model is a mathematical structure that identifies and forms relationship assumptions between predictor variables to subsequently output predictions for a target variable. For this project, the problem statement was to create a time series forecasting model to predict daily streamflow. Traditional models tend to take on the approach of utilizing a fixed window of timesteps to derive predictions. While effective solutions in some cases, they struggle to grasp more complex interactions such as that in the Fremont River Basin, with various climate, biological and environmental variables relating to one another in several timesteps. 

In these situations, Artificial Neural Networks have shown success in change detection problems in remote sensing (Gopal & Woodcock, 1996), employing a network system formed by several nodes to infer relationships between variables. In particular, Deep Learning Neural Network models have earned a reputation for achieving state-of-the-art results in complex time series forecasting problems (Schmidhuber, 2015). Specifically, Recurrent Neural Networks (RNN) have the capability to quickly understand sequential information and learn order dependence. A type of RNN, Long Short-Term Memory (LSTM) models are able to store information over extended time intervals within its internal memory state cells and essentially “remember” past information when exposed to new information (Hochreiter & Schmidhuber, 1997). As such, LSTM networks were an appropriate model for this project.

3.3 Data Analysis
The prediction performances of SNOW-M and the LSTM model were evaluated using several performance metrics for standard regression problems (Caruana & Niculescu-Mizil, 2006). For each model, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were calculated to reveal error variance.

RMSE and MAE are closely related metrics. MAE measured the average sum of the absolute differences between the predicted and actual streamflow values. It is suitable for gaining a qualitative sense of the average magnitude of prediction error, though lacking information on direction of error. RMSE manipulates that error by squaring and root squaring, resulting in better detection of large errors. The variables are predicted value (), actual value (), and number of values ().

					(3)

					(4)

Given error variance calculations, performance for each model was scored. From there, LSTM was determined to yield better results and was further developed. Model tuning such as hyperparameter tuning and feature engineering subsequently followed to optimize variables and identify ideal hyperparameters that are well suited for the data. This procedural loop was reiterated until the LSTM model reached high prediction accuracy. The model was retrained on the entire dataset and then given 60 days of past data to form 60 days of daily streamflow predictions for the Bicknell stream gauge. 
[bookmark: _Toc334198730]4. Results & Discussion

[bookmark: _Toc334198734]4.1 Analysis of Results
4.1.1 Exploratory Data Analysis
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Figure 3. Series of snow cover area change maps for the Fremont River Basin

Terra MODIS NDSI data were explored to visualize how snow cover patterns have changed in the Fremont River Basin during the study period. Figure 3a depicts mean snow cover area percentage per 500 meters in the past 17 years within the basin, with whiter areas indicating historically higher snow cover than that of dark blue areas. This data coincides with elevation and landscape understanding given that the left side of the basin consists of mountainous areas reaching 3,500 meters and experiences high snowfall activity. The right side is lower in elevation between 1,300 to 2,000 meters and has much different landscaping including shrubs and agricultural lands.

Figure 3b displays daily mean annual snow cover area in square kilometers for the study period. The orange line indicates the overall average snow cover area in the basin in the past 17 years to be approximately 283 square kilometers. From there, two change heatmaps were generated (Figure 3c) comparing snow cover area difference between the minimum and maximum snow years of 2001 and 2009 to that average value. Warm colored areas indicate much less snow cover percentage to the average while cool colored areas suggest vice versa. In both maps, the greatest snow cover differences lay in the right side of the basin, suggesting snowmelt changes to be occurring predominantly in lower elevation regions of the basin as opposed to in the high mountains.

4.1.2 LSTM Model
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Figure 4. Predicted streamflow by SNOW-M and SPAM

Comparing SNOW-M and SPAM performance in predicting streamflow in Figures 4a and 4b, it would appear that SPAM predicts streamflow trends more accurately than does SNOW-M. The SNOW-M model was able to model reasonable streamflow predictions given precipitation data but performed poorly after incorporating snow cover data. In addition, the SNOW-M model automatically applied smoothing functions to smoothen prediction curves. After unsmoothing, predicted streamflow values were particularly unstable and erratic. 

After optimizing tuning and projection parameters (view Appendix A2), SNOW-M yielded streamflow predictions with an accompanying MAE of 0.457 m3/s and RMSE of 0.552 m3/s. On the other hand, with optimized hyperparameter settings of 1 layer, 40 nodes, 5 batch sizes, and 20 epochs, SPAM yielded lower values in MAE at 0.247 m3/s and RMSE at 0.342 m3/s.

[image: ]
Figure 5. Homepage of the SPAM software

The SPAM software, shown in Figure 5, was developed in RShiny incorporating the LSTM model. Future end users have the option to interact with the software directly to generate 60 days of future streamflow predictions given 60 days of past input data for training the LSTM model that was constructed. Furthermore, SPAM was also developed with consideration to reproducibility and flexibility. Users may also input new data for a new basin and train a new LSTM model that is fitted and optimized to the conditions of the new basin, thus generating streamflow predictions for basins other than the Fremont River Basin. Future streamflow prediction output is displayed as shown in Figure 6. The data are also available in tabular format.

[image: ]
Figure 6: Example 60 days of predicted streamflow by SPAM given 60 days of user inputted data

4.2 Future Work
The next steps to further build and improve upon SPAM include testing the model’s performance on new unseen data from basins with conditions different to that of the Fremont River Basin, such as basins not dependent on snowmelt or have new types of considerations like landslides or soil permeability. It would also be valuable to experiment with other sources of existing data such as GPM particularly due to its appealing temporal resolution as high as 30 minutes.



Secondly, the model validation graphs displaying actual versus predicted streamflow values currently display only 3% of the total data due to limitations in model design. Implementing a cross validation procedure that can validate across the complete dataset would solve this problem and give an even more complete picture of the model’s performance. 

Last but not least, there are several updates and potential features that can be implemented to improve the SPAM software and user experience. This includes implementing automatic updates for the input data, possibly via API integration, so new input data can automatically sync into the software and generate new predictions as opposed to users manually updating the input data files. An addition, auto-generated EDA reports could provide a simple analysis of new input data so users can glimpse an immediate understanding of key trends and insights into the basin.
[bookmark: _Toc334198735][bookmark: _Toc334198736]5. Conclusions
In conclusion, in situ and remotely sensed data from the Terra MODIS and PERSIANN-CDR Earth observations were very effective inputs when paired with an LSTM neural network model to achieve remarkable results forecasting streamflow at the Bicknell stream gauge in the Fremont River Basin. The model, along with the user-friendly SPAM software, will help the CARE forecast streamflow in coming years, subsequently supporting decision making related to allocating water resources from the Fremont River Basin to surrounding agricultural lands for irrigation. Furthermore, the capability of the SPAM software in incorporating data to generate streamflow predictions for other basins extends its usage beyond CARE.
Analysis on the data provided by the EDA report suggests that mean snow cover area is experiencing the greatest fluctuations in the righthand side of the basin where elevation is lower and the environment is more vulnerable to climate factors such as temperature and precipitation. In addition, streamflow appears to be most closely correlated to precipitation and snow cover area more so than land surface temperature and other variables. Officials at the CARE can refer to these analyses and insights as they further research factors affecting streamflow within the Fremont River Basin.
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Aqua – Aqua satellite, Terra’s sister satellite
Neural Network – A network system formed by several nodes to infer relationships between variables
ArcSWAT – Soil and Water Assessment Tool ArcMAP extension
CARE – Capitol Reef National Park
Dirty Devil River – A tributary to the Colorado River. The Fremont River feeds into the Dirty Devil River 
Earth observations – Satellites and sensors, which collect information about the Earth’s physical, chemical, and biological systems over space and time
GPM – Global Precipitation Measurement, an Earth observation
LiDAR DEM – LiDAR derived Digital Elevation Model (DEM)
Long Short-Term Memory model – A popular type of Recurrent Neural Network that has the ability to “remember” past information and infer relationships when exposed to new information
MAE – Mean Absolute Error
MODIS – MODerate resolution Imaging Spectroradiometer
M-SRM – Modified Snowmelt-Runoff Model, modified in 2013 by DEVELOP from WinSRM (USDA)
NRCS – Natural Resources Conservation Service
PERSIANN-CDR – Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – Climate Data Record
Predictor variables – Variables that act as training data for the machine learning model in order to predict the target variable
PRISM – Parameter-elevation Relationships on Independent Slopes Model
R – A programming language and free software environment often used for statistical computing
Riparian habitats – The habitat found between a stream and land
RMSE – Root Mean Squared Error
SNOW-M – SNowmelt Observational Watershed Model
SNOTEL – SNOw TELemetry monitoring stations
Snowmelt – Surface runoff produced from melting snow
Streamflow – A measure of flow in a stream or river
SWE – Snow water equivalent
Target variable – The variable a machine learning model aims to predict based on several predictor variables
Testing data – A subset of the data that is applied only when a model is finalized in order to get results on real-world data
Training data – A subset of the data used to train the model
TRMM – Tropical Rainfall Measuring Mission
USGS – United States Geological Survey
Validation data – A subset of the data that is used to evaluate the accuracy of the trained model
Water year – A USGS prescribed year for from October 1 to September 30. This time period follows a logical water cycle that starts with snowpack accumulating during the winter season followed by snowmelt and water distributions in spring
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9. Appendices
Appendix A1. Full version of all Earth observation and in situ data acquired for constructing the LSTM model
	Name
	Data Type
	Products
	Unit of Analysis
	Time Period
	Source
	Variable Name

	MOD10A1
	Earth observation
	Snow Cover Daily L3 Global 500m Grid
	Square miles
	2000-2017 (water year), Daily
	Hosted on Google Earth Engine
	r#_snow

	MOD11A1.006 Terra
	Earth observation
	Land Surface Temperature and Emissivity Daily Global 1km
	Fahrenheit
	2000-2017 (water year), Daily
	Hosted on Google Earth Engine
	r#_lst

	PERSIANN-CDR
	Earth observation
	Precipitation, Daily 0.25 arc degrees
	Inches
	2000-2017 (water year), Daily
	Hosted on Google Earth Engine
	r#_pcp

	LiDAR derived DEM
	Remote sensing imagery
	Elevation, 0.33 arc-second resolution (10m)
	Meters
	2000-2017 (water year)
	USGS National Elevation Dataset
	N/A

	Black Flat SNOTEL (Site ID: 348)
	In situ
	SWE, precipitation, air temperature
	Inches, Fahrenheit
	2000-2017 (water year), Daily
	USDA, hosted on NRCS
	BF_snl_#

	Fish Lake SNOTEL (Site ID: 1149)
	In situ
	SWE, precipitation, air temperature
	Inches, Fahrenheit
	2010-2017 (water year), Daily
	USDA, hosted on NRCS
	FL_snl_#

	Bicknell Stream Gauge (ID: 09330000)
	In situ
	Streamflow
	Cubic feet per second
	2000-2017 (water year), Daily
	USGS
	strmflow

	Air temperature
	In situ
	Low elevation air temperature
	Fahrenheit
	2000-2017 (water year), Daily
	PRISM
	temp_prsm

	Temperature lapse rate
	In situ, derived
	Temperature lapse rate
	Fahrenheit per 100 feet
	2000-2017 (water year), Daily
	N/A
	tlr_prsm



Appendix A2. Parameter settings for the SNOW-M model when generating predictions to be compared against SPAM
[image: ]

2

image3.gif
21000 1058 o 21000 Moo N





image4.jpeg
Legend





image5.jpeg




image6.gif
21000 1058 o 21000 Moo N





image7.jpeg
Legend





image8.jpeg




image6.png
Snow Cover

Basin

River

17 -34%

34-68%

Difference

River

Basin

CARE

B 100-70%
I 0--40%
[ #0-0%
[ Jo-150%

150-250%

- 550-750%
- 750-1,750%

Mean Snow Cover Area (2000-2016)

¥ 7

\

LRI

Snow Cover Area for Minimum and Maximum Years vs. Mean Snow Cover Area

\ 5 ¥ ¢ R >

[
£ il
2001 (Minimurn)

SN

Annual Snow Cover Area in 2000-2016

3881

3631

3371

3114

2854

259+

2331

2071

A

T T T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2014 2016

\

-

~

>





image7.emf
Actual vs. Predicted Streamflow by SNOW-M

- - Actual
E E Predicted
- DS E
B - S VA, ‘A — A '»J
| | - I I - I I
50 100 150 200 250 300 350

2016-2017 Water Year










Actual vs. Predicted Streamflow by SNOW-M 

Actual

Predicted 

2016-2017 Water Year

S

t

r

e

a

m

f

l

o

w

 

(

m

3

/

s

)

6   

5 

4

3

2

1

50

100

150 200 250 300 350


image8.emf
Streamflow (m?3/s)

Actual vs. Predicted Streamflow by SPAM

A “w, ,\ﬂ'

A

1"‘
.1‘

Actuadl
Predicted

." li'\"l ‘ I M
Wy “' “‘Jl)'v ' ‘r\n”,ﬂ

0 500

\ 'A"w
Ry “‘
1000

Day since September 14, 2011

1500

2000










Actual

Predicted 

Actual vs. Predicted Streamflow by SPAM 

S

t

r

e

a

m

f

l

o

w

 

(

m

3

/

s

)

Day since September 14, 2011

6   

5 

4

3

2

1

500 

0 

1000 

1500 

2000 


image9.png
Home Train New Model Visualize Data Help Credits

Welcome to the Streamflow Prediction & Assessment Model

Start by creating and selecting a new or existing basin directory. After training, preview validation graphs of all trained models before selecting
a model for generating predictions.

- L < Preview All Validation Graphs . Load Trained Model
Select existing basin directory

Fremont_Basin v

Alternatively, set up a new basin
directory

£ Set Up New Directory




image10.png
Streamflow in m”"3/s

60 Days of Predicted Streamflow by SPAM

1.8 1

—
~
|

—
(@)
1

1.5 1

20

Future day since last known date

40

60





image11.png
Tuning Factors
Base Flow: 1200
Max Time Lag (Precip): 1
Max Time Lag (Snow): 1
Runoff Coefficients:
Snow:
Precipitation (TRMM, GPM):
TRMM Zone:
Precipitation (In-Situ):

Degree-Day Factor: 0
Temp Lapse Factor 0
Critical Temperature: 00
Recession Coefficient:

X Coef:

¥ Coef:

Simulate and Validate
Master to Simulate: 3017

Tuning Zone Width: )
Forecast Zone Start 121
Forecast Zone Width: | e

(Litersis)

Days

Days
03 |Factor
03 |Factor

s | zone#

03 |Factor

Factor

Factor
Degrees C
095 | Factor
005 | Factor
[ outputto Fie

Days.

Julan Day

Days.

Simulate





image1.jpg




image2.png
DEVELQP




