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I. Abstract
The Laramie Mountain Range, located in southeastern Wyoming, supports a multitude of plant and animal communities as well as human activities. Recreational opportunities, ample views, and critical mule deer (Odocoileus hemionus) and elk (Cervus canadensis) habitat are facets that depend heavily upon the presence of aspen (Populous tremuloides) communities. However, the success of these relationships is inhibited by the limited distribution of aspen in the Laramie Mountain Range. The ultimate objective of this two term project is to evaluate the carrying capacities of mule deer and elk habitat in the Laramie Mountain Range by identifying current aspen distribution. Due to the scattered distribution of aspen trees in southeastern Wyoming, understanding historic fire patterns and future fire susceptibility in areas of close proximity to aspen stands can inform management practices. Thirty-one years of remotely sensed data were processed to create a spectrally and spatially consistent tasseled-cap time series. Tasseled-cap indices were utilized to estimate fire frequency and perform a supervised classification to detect burned areas. Results from both processes were compared with the Monitoring Trends in Burn Severity product (which employs the Normalized Burn Ratio) to evaluate the use of tasseled-cap indices for fire monitoring. A fire hazard analysis was conducted to quantify fire susceptibility throughout the study area. Multi-temporal pixel values were extracted from spectral and topographic indices, and compared to pre-fire pixel values at historic fire locations. The similarity of a given pixel to previously burned pixels was estimated with a series of distance metrics.
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Background Information
The Laramie Mountain Range consists of two units in southeastern Wyoming, the Pole Mountain (or Sherman) unit and Laramie Peaks unit (Wirsing and Alexander, 1975). Together, these two units comprise a portion of the Medicine Bow National Forest (MBNF), which spans over 1.4 million acres. With such an expansive range, the area provides a multitude of ecosystem services, including year round recreational opportunities, timber harvest, wildlife habitat, and forage for livestock (Wirsing and Alexander, 1975) (USFS, 2016).

The MBNF extends from 6,500’ to over 12,000’ in elevation and supports a diverse collection of forest communities where aspen (Populus tremuloides) stands are among the most species rich habitats in Wyoming (Wirsing and Alexander, 1975). Stands of mixed ages filter out little sunlight, which facilitates the growth of a diverse community of herbaceous understory vegetation. As a result, aspen stands provide high quality forage for mule deer (Odocoileus hemionus) and elk (Cervus canadensis) (St. Clair et al., 2013). The dense stand structure grants protection from predation, making aspen stands an excellent environment for fawn and calf rearing (Leckenby et al., 1882).

However, the continuous spread of Sudden Aspen Decline (SAD) across the western United States (US) has become a topic of interest for the land managers of the MBNF. Rapid die-offs in aspen have been prevalent for years, but it was not until 2002 that the phenomenon was officially named (Morelli and Carr, 2011). Within the past few decades, SAD has been shown to have a strong correlation with climate change (Morelli and Carr, 2011). Coupled with the mule deer declines across the western US, aspen regeneration has become a major concern in the MBNF.

The typical response to aspen die-back is a stimulation for the production of aspen suckers, new stems from the parent organism, through prescribed burning (Bartos et al., 1991). However, if a fire is too severe, aspen stands will experience extreme damage and will not be able to regenerate. To better understand the overall ecological response in areas subjected to fire, land managers require a comprehensive history of the location, extent, and frequency of past fires in the study area; post-fire effects on the land and estimated susceptibility to future fires can be analyzed to plan appropriate treatments and future management plans for the MBNF. 

Project Objectives
We delineated fire history, calculated fire frequency, and estimated susceptibility to future fires through a 31-year time series (1984-2015) in the Laramie Mountain Range. The project utilized easily reproducible methodology to facilitate continued research by project partners. The second term of this project will identify aspen cover from a Species Distribution Model (SDM) and compare it to the collected fire data. The research will inform project partners about the relationship between fire and aspen for conservation and land management plans.

Study Area and Period
The study area (Figure 1) is encompassed by WRS2 Path 34, Row 31 and focuses on areas within aspen species range (elevations of 1,580 m to 3,200 m) (Mueggler, 1988). The study period is between June 1984 and August 2015 during the growing season months of June to August when fires are the most prevalent.

National Application Addressed
By creating fire history products and estimating susceptibility to future fires, this project addressed the NASA Application Area of Ecological Forecasting. The compiled data will assist land managers in efforts to forecast locations of aspen stands, conserve aspen stands that are at risk of future fires, and implement methodology to facilitate aspen regeneration within the Laramie Mountain Range and surrounding areas.

Project Partners
Our project partners were the Wyoming Game and Fish Department, USDA Forest Service (USFS), Laramie Ranger District, and Colorado State University, Natural Resource Ecology Laboratory (NREL), whose work encompasses the extent of the Laramie Mountain Range. These end-users requested maps and data to better understand the fire ecology of the study area, which will aid in refining land management and conservation efforts. This project facilitated research that was previously fragmented due to financial constraints of the project partners and limited access to the study area.

NREL has collaborated with the Wyoming Game and Fish Department and USFS, Laramie Ranger District on previous NASA DEVELOP projects in the region. They maintain a close working relationship with local land managers and scientists to promote research opportunities and support management operations.Laramie Mountains Ecological Forecasting Study Area
Study Area Extent
Path, Row Outline
Figure 1: Laramie Mountains Ecological Forecasting Project Study Area. Extent included the Pole Mountain (or Sherman) unit and Laramie Peaks unit, which comprises the Laramie Mountain Range.

[bookmark: _Toc334198726]III. Methodology
Data Acquisition
The Laramie Mountains Ecological Forecasting team utilized a variety of NASA Earth observation data (Table 1). Through the United States Geological Survey (USGS) EarthExplorer portal, we downloaded Shuttle Radar Topography Mission (SRTM) 1-arc second, 30 m, void-filled digital elevation model (DEM) data for the range of our study area (USGS, 2015; 1). Also through the EarthExplorer portal, we compiled all available Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager and Thermal Infrared Sensor (OLI and TIRS) imagery with less than 20% cloud cover for the 1984-2015 growing seasons (June through August). A total of 171 Level 1 terrain-corrected surface reflectance (SR) images were downloaded through the USGS Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA) On Demand Interface.

Table 1: NASA Earth Observation Products. Data were acquired through the USGS EarthExplorer portal.
	Platform
	Data Product
	Spatial Resolution
	Images

	Landsat 5
	TM
	30 m
	110

	Landsat 7
	ETM+ (SLC-off)
	30 m 
	12

	Landsat 8
	OLI & TIRS
	30 m (OLI) & 100 m (TIRS)
	43

	SRTM
	DEM
	30 m
	6



The USFS, Laramie Ranger District provided us with shapefiles for Administrative Boundaries, Vegetation Records, and Fire History Records of southeastern Wyoming. Additional vegetation and fire history records were acquired from the Landscape Fire and Resource Management Planning Tools Program (LANDFIRE) (LANDFIRE, 2010) and Monitoring Trends in Burn Severity (MTBS) project (USGS, 2015).

Data Processing
We mosaicked 1-degree tiles of SRTM elevation data to create a DEM of the study area using the LandsatLinkr package in the R statistical computing language and environment. Aspen stands in the intermountain west typically occur between 1,500 m and 3,200 m in elevation (Mueggler, 1988). The study site for this project was determined by excluding locations with elevation values outside of this range. Processing of SRTM data was performed in QGIS Desktop version 2.12.1.

We further used LandsatLinkr for the processing of all Landsat imagery. LandsatLinkr creates spectrally and spatially consistent images through time and between sensors. Data downloaded from EarthExplorer were decompressed, stacked, resampled, and reprojected. Tasseled-cap (tcap) indices were calculated for each TM and ETM+ image. While tcap indices are sensor specific, the calibration step in LandsatLinkr allows them to be compared across images and sensors. The OLI and TIRS data were spectrally calibrated to ETM+ data. Annual cloud-free composite images were generated as stand-alone outputs, as well as a time series stack consisting of all annual cloud-free image composites. Locations outside of the study area were masked, and the resulting image stack was used for subsequent data analysis.

Topographic indices were derived from the DEM using the ArcGIS Geomorphometric and Gradient Metrics Toolbox in ArcMap version 10.3 (Evans, 2014). Indices included slope, linear aspect, classify aspect, slope aspect transformation for cosine and sine, compound topographic index (CTI), and heat load index (HLI).

Fire history data were manually processed within ArcMap version 10.3. Data acquired from the USFS and MTBS were merged into one shapefile that contained all fire history records and associated metadata for our study area and period.

Data Analysis
Fire History
To delineate fire history throughout the Laramie Mountain Range, two types of supervised classification, a Maximum-Likelihood classification and Random Forest model, were performed on the processed Landsat imagery.

The Maximum-Likelihood method classifies pixels across an entire data set based on a subset of user-defined signatures for different pixel values. To adequately train the model, a signature file was created by drawing polygons within the imagery to contain values for fire affected pixels, two types of unburned pixels, open-water areas, and rivers. The Maximum-Likelihood classification was executed in ArcMap version 10.3 using the signature file and annual tcap composites for each year within our study period. The Random Forest classifier was performed in R with the RStoolbox package (Leutner and Horning, 2016).

Fire Frequency
The Fire Regime Condition Class Mapping Tool (FRCCmt) was utilized to evaluate the fire frequency for the study area and period. Developed in 2002, the tool integrates information across multiple agencies to evaluate current fire regimes and determine the resulting vegetative response to changes in fire ecology (NIFTT, 2010). This tool was downloaded from the Fire Research and Management Exchange System (FRAMES). To successfully run the FRCCmt, reference data were required from (1) a Biophysical Setting (BpS) depicting environmental descriptors from LANDFIRE, (2) a DEM downloaded for our study area, and (3) a merged shapefile of all fire polygons between 1984 and 2015. A map reporting how many instances each pixel within the study area had burned was generated in ArcMap version 10.3 using the FRCCmt.
 
Fire Susceptibility
To model fire susceptibility, a cluster analysis was performed via Density Based Spatial Clustering of Applications with Noise (DBSCAN) and k-Nearest Neighbors (k-NN) using Graphlab Create, a Python machine learning platform (Dato, 2015).

We generated 20,000 random sample points within our study area. Image values at the point locations were calculated from the tcap indices and topographic indices for each year. Sample points were assigned unique identifiers to allow for the same location to be sampled from multiple images, resulting in a 580,000 x 6 matrix (Figure 2). 

DBSCAN was used to analyze the sample data for similarity and identify clusters of pixel values across all images. The DBSCAN algorithm identifies three types of points (core, boundary, and noise) and takes user-defined values for two parameters; radius (which defines the space in which data points will search) and density (which defines a minimum number of points which must be within the search range for a point to be classified as a ‘core’ point). Boundary points are those within the user-defined radius of other points, but do not have enough points within the search range to qualify as core points. Noise points are those that do not have any other points within their search radius. This method does not force all points to be in clusters and allows for the detection of outliers in the data. The results of DBSCAN are very dependent on the assigned parameter values for radius and density. Multiple runs identified anywhere from 18 to 2,000 clusters (Figure 3). Parameter value estimates were informed by observing the distribution of distances between sample points resulting from the k-NN output.Figure 2: Point Data. Matrix depicting types of normalized data, including tcap brightness, tcap greenness, compound topographic index, heat load index, and elevation for points 1 through 20,005.

Figure 3: DBSCAN Clustering. Example displays three clusters of points.

The k-NN algorithm was run with the compiled data from the 20,000 study area points to identify the 100 nearest neighbors to each sample point (i.e. sample points that had vectors of values most similar to that of the point being considered). Euclidean distance and cosine similarity measures were utilized to determine correlation between sample points.

We also generated 100 random points within the footprints of the 2012 Cow Camp and Squirrel Creek fires and calculated tcap and topographic indices values for those locations. As the aim was to determine fire susceptibility of locations within the study area and not to detect locations that had burned, values for the Cow Camp and Squirrel Creek sample points were recorded for the 2011 image (i.e. the year before fires occurred). 

Fire susceptibility was modelled under the hypothesis that pixels susceptible to potential fires would exhibit similar spectral values as those of the Cow Camp and Squirrel Creek sample points in 2011. The similarity of study area points to the Cow Camp and Squirrel Creek points served as a proxy for fire susceptibility should an ignition source occur, and was not viewed strictly as a probability that a location would burn the following year. The Cow Camp and Squirrel Creek points were used to query the k-NN model to determine which points in the larger sample were the most similar. While a full nearest-neighbors similarity graph was beyond the limits of our computing ability, a similarity graph for the Cow Camp and Squirrel Creek sample points was constructed for their three-nearest-neighbors to visualize the relative degree of clustering within a sub-sample of data.
Fire susceptibility maps were generated by plotting the five nearest-neighbors of fire points allowing for duplication (i.e., points were allowed to be their own nearest neighbor) to qualitatively assess the effect of the number of sample points on spatially representing locations of known fire occurrence (Figure 4). To spatially represent fire susceptibility across the entire site, we plotted all sample points for a given year and interpolated in between point locations based on their degree of similarity to the Cow Camp and Squirrel Creek sample points. This generated a continuous surface map of modeled fire susceptibility (Figure 7).Nearest Neighbor
1st
2nd
3rd
5th 
4th
2010
2011
2012
Figure 4: k-NN Five Nearest Neighbors. Depicts points that were the most similar to fire points while allowing for duplication (i.e. points were allowed to be their own nearest neighbor).

[bookmark: _Toc334198730]IV. Results & Discussion
[bookmark: _Toc334198735]Analysis of Results
Fire History
Maximum-Likelihood (Figure 5) and Random Forest classifiers were in general agreement regarding their labeling of fire affected pixels, with neither showing markedly better performance than the other for a given image. Land managers will be able to evaluate the final products and determine which method better suits their intended outcomes. Legend
Fire affected pixels
Figure 5: Fire History for 2012. Identifies areas that the Maximum-Likelihood model classified as affected by fire in 2012 imagery; Inset map highlights areas affect by the Arapaho Fire.

Fire Frequency
The fire frequency product provides our partners with an accurate and informative graphic that displays how many instances of fire occurred at a given location within the Laramie Mountain Range for the study period (Figure 4). Identifying the areas that have burned multiple times provides guidance in fire prevention efforts in order to preserve the landscape as well as protect privately owned property. 
Legend
High: 0.06235

Low: 0.01322
Figure 7: Fire Susceptibility. Depicts a pixel's risk of future burning and compares results with fire footprints.
Instances of
Fire Occurrence
One
Two
Three
Figure 6: Fire Frequency. Highlights the region where fires were the most prevalent within the study period.

Fire Susceptibility
Cluster analysis generally identified similarities between locations from the year prior to fire events, and locations in the Cow Camp and Squirrel Creek sample (Figure 7). This similarity was more uniform within the footprints of larger fires and is seen when overlaying the footprints of fires occurring in 2012 on the 2011 fire susceptibility map. However, areas within smaller fire footprints were often more varied in their similarity to the Cow Camp and Squirrel Creek sample points. This was in large part due to the reduced number of sample points within the local area, and the interpolation incorporating values from points beyond the small fire extents. Generating more random points within the study area in the attempt to reduce this phenomenon is possible, but quickly becomes taxing in terms of computation time and data storage.

Errors and Uncertainty
Despite pre-screening imagery to only those with less than 20% cloud cover for the entire scene, the present cloud cover was often concentrated within the study area as a result of orographic weather patterns in the mountain range. While LandsatLinkr was able to produce annual cloud-free composites, it relied on calculating average pixel values for all images within a given year. In effect, this ‘mutes’ changes that happen within a year, and reduces the information available regarding gradual transitions in spectral properties. The result of this averaging was seen in both the supervised classifications and cluster analyses.

By calibrating tcap indices across sensors, LandsatLinkr provides a valuable opportunity to assess landscape change throughout the entire Landsat archive. We were particularly interested in testing this with the supervised classification approaches for detecting burn scars. To test this, we identified the spectral signatures of burn scars in several years, and attempted to use those signatures to identify burned areas in images from different years (and sensors). Despite the cross-sensor calibration, we found that the classifier performance was greatly diminished when spectral signatures from a given year were applied to others. This may result from several factors such as the need for more sample locations or more homogenous regions within a given class. However, it also suggests that the tcap calibration process may be in need of further refinement to allow for efficient analyses across the entire Landsat record.

Supervised classification methods employed in this project required the identification of specific areas representing particular land-cover types. Due to the heterogeneity of land-cover types within the study area, further refinement of class types and the inclusion of a larger number of sample locations would likely increase the performance of the Maximum-Likelihood and Random Forest classifiers. 

Other sources of uncertainty originated from the ancillary data that was acquired from various agencies and varied greatly in their content and consistency. This caused difficulty in designating thresholds for fire identification and validating the dates and locations of prescribed fires.

Future Work
This project will be expanded upon during the summer term where a SDM will be utilized to delineate aspen cover throughout the Laramie Mountain Range. The identification of aspen will serve as an indicator of habitat quality and carrying capacity for mule deer and elk. Incorporating fire history and fire susceptibility maps, as well as calculated fire frequencies with the aspen cover maps, will further inform land managers on the relationship between fire and aspen regeneration, which will aid in conservation efforts.
Other potential future work includes expanding the study area beyond the Laramie Mountain Range to encompass more units within the MBNF. Researching fire history and aspen locations on a larger scale will help land managers to better understand the fire ecology of southeastern Wyoming and aspen’s response to fire.

Field work can also be conducted in the area to identify previously burned areas, locate aspen stands, and ground-truth results. Studying the characteristics (e.g., stand density, average diameter at breast height, amount of young aspens, etc.) of these stands will provide additional information regarding aspen growth and regeneration.
V. Conclusions
Results from the Laramie Mountains Ecological Forecasting project indicate that the use of Landsat data may serve as a useful tool in describing fire history and assessing fire susceptibility in remote areas. By classifying imagery from the Laramie Mountain Range in southeastern Wyoming, we were able to construct a preliminary fire history for the study area and period. Model predictions were evaluated through visual comparisons between model outputs and fire history data from the USFS and MTBS, as well as prediction error metrics. We were also able to identify susceptibility to future fires within the study area. The final maps and models provide a tool for refining records of fire history and estimating future fire risk throughout the Laramie Mountain Range.

The use of remote sensing allows research to be conducted in areas despite physical limitations, such as the steep terrain and lack of roads within the Laramie Mountain Range. By being able to identify previous fires and predict the risk of future fires, land managers are able to better understand the fire ecology of southeastern Wyoming. The increased access to data and modeling techniques will further assist land management and conservation efforts.

Upon completion of the term, final products included fire history maps, a fire frequency map, and a fire susceptibility map for the Laramie Mountain Range in southeastern Wyoming between the years of 1984 and 2015. 
[bookmark: _Toc334198736]VI. Acknowledgments
Dr. Paul Evangelista (Colorado State University, NREL)
Dr. Amanda West (Colorado State University, NREL)
Ryan Amundson (Wyoming Game and Fish Department)
Daron Reynolds (USDA Forest Service, Laramie Ranger District)
Dr. Bill Romme (Colorado State University, NREL)
Justin Braaten (Oregon State University, Lab for Applications of Remote Sensing in Ecology)
Brian Woodward (Colorado State University, NREL)

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

[bookmark: _Toc334198737]This material is based upon work supported by NASA through contract NNL11AA00B and cooperative agreement NNX14AB60A.
VII. References
[bookmark: _Toc334198738]Bartos, Dale L., Walter F. Mueggler, B. Robert Jr, and others. “Regeneration of Aspen by Suckering on Burned Sites in Western Wyoming,” 1991. Accessed February 14, 2016. http://www.treesearch.fs.fed.us/pubs/36690.
Dato, 2015. GraphLab Create: An extensible machine learning framework. Dato. Inc. 
Evans JS, Oakleaf J, Cushman SA, Theobald D (2014) An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, version 2.0-0. Available: http://evansmurphy.wix.com/evansspatial. Accessed: 2016 February 25th.
LANDFIRE, 2010, Existing Vegetation Type Layer, Biophysical Settings, Mean Fire Return Interva, LANDFIRE 1.1.0, U.S. Department of the Interior, Geological Survey. Accessed February 1, 2016. http://landfire.cr.usgs.gov/viewer/.
Leckenby, D.A., Sheehy, D.P., Nellis, C.H., Scherzinger, R.J., Luman, I.D., Elmore, W., Lemos, J.C., Doughty, L. & Trainer, C.E. 1982: Wildlife Habitats in Managed Rangelands - The Great Basin of Southeastern Oregon - Mule Deer. - USDA Forest Service and USDI Bureau of Land Management General Technical Report RNW-139, Portland, Oregon, USA, 40 pp.
Leutner, B., Horning, N., 2016.  RStoolbox: Tools for Remote Sensing Data Analysis. R package version 0.1.4.
Morelli, Toni Lyn, and Susan C. Carr. “A Review of the Potential Effects of Climate Change on Quaking Aspen (Populus Tremuloides) in the Western United States and a New Tool for Surveying Sudden Aspen Decline,” 2011. Accessed February 4, 2016. http://www.treesearch.fs.fed.us/pubs/38186.
Mueggler, Walter F. “Aspen Community Types of the Intermountain Region,” Utah State University, January 1, 1988. Aspen Bibliography. Accessed February 9, 2016. http://digitalcommons.usu.edu/aspen_bib/3326.
NIFTT. (2010). Interagency Fire Regime Condition Class (FRCC) Guidebook [3.0]. Retrieved March, 2016, from https://www.frames.gov/files/7313/8388/1679/FRCC_Guidebook_2010_final.pdf
St. Clair, Samuel B., Xavier Cavard, and Yves Bergeron. “The Role of Facilitation and Competition in the Development and Resilience of Aspen Forests.” Forest Ecology and Management 299 (July 2013): 91–99. Accessed February 4, 2016. doi:10.1016/j.foreco.2013.02.026.
USDA Forest Service. “Medicine Bow-Routt National Forests & Thunder Basin National Grassland - About the Forest” 2016. Accessed February 10, 2016. http://www.fs.usda.gov/main/mbr/about-forest.
USGS, 2015. “Monitoring Trends in Burn Severity.” Monitoring Trends in Burn Severity (MTBS). Last modified April, 2015. Accessed February 1, 2016. http://www.mtbs.gov/index.html.
Wirsing, John M., and R. R. Alexander. Forest Habitat Types on the Medicine Bow National Forest, Southeastern Wyoming: Preliminary Report, 1975. Accessed February 11, 2016. http://hdl.handle.net/2027/uiug.30112104053647.
VIII. Content Innovation
Glossary Viewer
· Aspen (Populus tremuloides) - an iconic deciduous tree that is widely distributed throughout the US and threatened by ungulate browsing, climate change, SAD, and fire suppression
· Cluster Analysis – a model that uses a point’s distance to points with similar characteristics to classify an image 
· k-Nearest Neighbors (k-NN) algorithm - classifies an unknown point based on the most common class within known points
· Digital Elevation Model (DEM) - a 3D representation of terrain surface acquired through the Shuttle Radar Topography Mission (SRTM)
· Elk (Cervus canadensis) - a larger deer species native to North America that feeds on grasses, plants, leaves and bark
· Fire Ecology - a scientific discipline that analyzes ecosystem responses to fire
· Fire Frequency - a calculation of how often an area is affected by fire
· Fire Regime Condition Class Mapping Tool (FRCCmt) - interagency tool aimed to provide guidance for management actions by modeling ecological departure
· Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project – a collection of publically available geospatial layers for vegetation, fuel, disturbance, and fire regimes data
· LandsatLinkr - an automated system executed in R or R Studio to preprocess imagery and create spectrally consistent scenes across different sensors
· Monitoring Trends in Burn Severity (MTBS) - a collection of data on burn severity and the extent of fires across the US from 1984 to the present
· Mule Deer (Odocoileus hemionus) - a deer species commonly found throughout the Mountain West that browse on tree, forb, and grass species; often referred to as an indicator species as their presence is indicative of a thriving community
· Normalized Burn Ratio (NBR) - an index that highlights areas that have burned and identifies the degree of burn severity
· Species Distribution Model (SDM) - statistical models that utilize field data of species occurrence and environmental covariates
· Sudden Aspen Decline (SAD) - ecological phenomenon where aspen (Populous tremuloides) stands experience a rapid die-off with large percentages of a stand being extirpated in just a few years
· Supervised Classification – a model that utilizes training data to correctly delineate features within an image
· Maximum-Likelihood - each unknown pixel is assigned to a class based on statistical evidence of where it best fits
· Random Forest - classifier that create decision trees that output the most frequent class classified
· Tasseled-Cap (tcap) Transformation - the conversion of the original TCAP Brightness, TCAP Greenness, and TCAP Wetness bands into a composite image
· Threshold - minimum value allotted. Specifically used in this project in regard to cloud cover and fire pixel identification during supervised classification

Interactive Map Viewer
Fire History Map
https://drive.google.com/file/d/0B88ezqpPNPOfaEFxVlc3Q0p5Tzg/view?usp=sharing

Fire Frequency Map
https://drive.google.com/file/d/0B-O6W-7h3WXkVm11andzOF8zM0U/view?usp=sharing

Fire Susceptibility Map
https://drive.google.com/file/d/0B88ezqpPNPOfRmRNeHlMSUE4Tmc/view?usp=sharing

Featured Multimedia for this Article
A link to our video on Earthzine will be added here shortly!
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