

Southeast U.S. Climate

Leveraging Land Cover and Aboveground Biomass Products to Evaluate Carbon Emission Trends in the Talladega National Forest

> Heidi Rogers (Project Lead) Mistaya Smith Maggie Mason Anish Holla

Pop-Up Project | Fall 2022

Outline

- Tech and Innovation Project
- ► SERVIR
- Background
- Study Area & Period
- Satellites/Sensors
- Objectives
- Methodology
- Results
- Conclusions
- Errors & Uncertainties
- Future Work
- Acknowledgements

Image Credit: Center for International Forestry Research (CIFOR)

Tech and Innovation Project

- Tool development
- Highly technical methods
- Coding heavy analysis
- Varied set of deliverables
 - Internal scripts
 - Tutorial
- AGILE framework

SERVIR

SERVIR-CArbon Pilot Program (S-CAP)

NASA, US Agency for International Development, and other geospatial organizations Uses remote sensing to report carbon emissions from deforestation in developing countries

Development, resource management, community resilience

Background

- Effective carbon management mitigates greenhouse gases
- Living trees are carbon sinks
 - Aboveground Biomass (AGB)
- Deforestation emits carbon into atmosphere
- Climate change mitigation goals require understanding regional carbon emissions

Background

- Deforestation: Disturbances that result in sustained loss of forest
 - Logging
 - Fire
 - Agriculture
 - Infrastructure expansion
- Carbon stock: The amount of carbon stored in a forest
- AGB and extent of deforested area needed to estimate carbon emissions
 - Difficult and costly to measure by foot

Study Area and Period

- Study Period: 2016-2021
- Study Area: Talladega National Forest, Alabama

- Over 300,000-hectare forest
- Comprised of oak, hickory, and pines
- Long history of logging
- Current management includes
 logging and prescribed fires

Satellites and Sensors

Satellites and Sensors

► Airborne LiDAR

Objectives

Methodology: Overview

을 Deforestation Carbon Emissions

Land Change Maps

Ground Biomass

National Land Cover Dataset (NLCD)

LandTrendr

Global Forest Watch (GFW) Landscape Change Monitoring System (LCMS)

ISS GEDI

ICESat-2 Atlas

Methodology: Land Change Maps (2016-2021)

Results: Land Change Maps (2016-2021)

Change Map Method	Area Classified (ha)*	Area Deforested (ha)*	%Area Deforested
LandTrendr	43,716	8,405	2.75%
NLCD	296,227	5,830	1.91%
GFW	63,998	3,586	1.18%
LCMS	297,114	1,032	0.034%

Results vary depending on the change map method and the land classification technique.

*Rounded to the nearest whole number.

- LandTrendr
 - Calculated most deforestation
 - Classified least ROI
- NLCD
 - Classified the 2nd most ROI
 - Specific land use classification made forest detection easy
- GFW
 - Year of loss method risks missing deforestation outside of 2016-2021
- LCMS
 - Classified the most ROI
 - Less specific land classification make change detection difficult

Methodology: Above Ground Biomass

ISS GEDI:

- Data obtained 2019-2021
- Provides AGB data
 - Uses statistical models
 - Accessible in GEE
 - Produces 1 km grid of mean AGB
- Overlap GEDI with non-deforested map
 Calculate a global AGB average for TN

Basemap: Google Earth Engine

Methodology: Above Ground Biomass

ICESat-2 ATLAS:

- Data acquired for 2021
- Provides canopy height
 - Processed in python and ArcMap
 - Moved into GEE
 - Produced point data
- Transformed data to AGB using Allometric Equations
- Calculate a global AGB average for forested areas

Basemap: Google Earth Engine

Methodology: Allometric Equations

- Saatchi et al. 2011
 - AGB = $0.314 * hmax^{2.0608}$
- Nelson et al. 2017
 - $AGB = -10.533 + hmax^{10.949}$
- Lefsky et al. 2005
 - $AGB = 20.7 * (0.098 * hmax^2)$

hmax= max tree height (m) AGB= Above Ground Biomass (Mg/ha)

Methodology: Carbon Emissions

Carbon stock =

Mean AGB * Carbon Fraction

- AGB = Mg/ha
- Carbon Fraction = .48 (IPCC, 2019)

Carbon emissions =

Carbon stock * area deforested

Results: LandTrendr Carbon Emissions

Change map	Data source	Height Transformation	AGB mean (Mg/ha)	Carbon Emissions (Mg)
LandTrendr	GEDI		202	814,971
	ICESat-2	Lefsky	122	495,091
		Nelson	331	1,338,357
		Saatchi	401	1,616,467

Full results available in presentation appendix.

Highlighting Land
 Trendr results

- Highest deforestation estimation
- Median emissions: 1,076,663.76
 - Equivalent to driving an average car around the Earth ~100,000 times

Results: Validation

- Airborne LiDAR data used to validate ICESat-2 data
 - Overlap
 - Clip
 - Calculate

Results: Validation

 Airborne LiDAR height data used to validate ATLAS height data

Sample region

▶ n=33

 ICESat-2 Atlas consistently overestimates height

Errors and Uncertainties

Causes of deforestation

Validation and accuracy

Dates

Land change methods

Regrowth

Method choice

Conclusions

- Deforestation estimates vary depending on the change map used
 - NLCD and LandTrendr
- AGB estimates depend on the sensor used
- Carbon emissions estimates will vary depending on AGB and forest change methods implemented
- More validation needed
- Reproducible coding scripts and tutorial developed for future teams

Future Work

Apply

Utilize tested methods on other regions and study areas.
Run simple accuracy analysis like random sampling test.

Introduce

- Teach methods to partners/end users, collaborating to inform policy decisionmaking and practices on determining carbon emissions.
- > Feedback from the partners could further refine capabilities.

Explore

- Investigate potential interactions of forest cover and carbon emissions in Indigenous communities and other areas.
- Examine specific types of disturbances (e.g., fires).
- Incorporate belowground biomass into measurements.

ACKNOWLEDGEMENTS

Science Advisors

- Christine Evans, SERVIR Science Coordination Office, University of Alabama in Huntsville
- Dr. Emil Cherrington, SERVIR Science Coordination Office, University of Alabama in Huntsville
- Joseph Spruce, Science Systems and Applications, Inc.

NASA DEVELOP

Caroline Williams, NASA DEVELOP Fellow

This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations.

Appendix 1: All Carbon Emissions Results

Change map	Total Hectares in Calculation	Area deforested (ha)	Data Source	Height Transformation	AGB mean (Mg/ha)	Carbon Emissions (Mg)
LandTrendr	43,715.6	8404.61	GEDI		202	814,970.94
			ICESat-2	Lefsky:	122	495,090.59
				Nelson:	331	1,338,356.58
				Saatchi:	401	1,616,467.44
NLCD	296226.9	5829.88	GEDI		175	489,770.53
			ICESat-2	Lefsky:	110	307,946.52
				Nelson:	308	860,948.83
				Saatchi:	350	978,532.59
GFW	63997.7	3586.23	GEDI		161	276,555.41
			ICESat-2	Lefsky:	160	182,732.81
				Nelson:	300	516,394.23
				Saatchi:	334	75,037.26
LCMS	297113.8	1032.47	GEDI		174	86,385.07
			ICESat-2	Lefsky:	110	54,734.61
				Nelson:	309	153,143.58
				Saatchi:	351	174,063.84

Appendix 2: Acronym Glossary

- AGB Aboveground Biomass
- ATLAS Advanced Topographic Laser
 Altimeter System
- ETM+ Enhanced Thematic Mapper Plus
- GEDI Global Ecosystem Dynamics
 Investigation
- GEE Google Earth Engine
- GFW Global Forest Watch
- ICESat Ice, Cloud, and Land Elevation
 Satellite

- ► **ISS -** International Space Station
- LiDAR Light detection and ranging remote sensing method
- LCMS Landscape Change Monitoring System
- LT LandTrendr
- NLCD National Land Cover Dataset
- OLI Operational Land Imager
- **S-CAP –** SERVIR-CArbon Pilot program