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1. Abstract
The marshlands fringing Mobile and Baldwin counties collectively comprise one of the most dynamic ecosystems in the Northern Gulf of Mexico. Coastal Alabama wetlands are an important ecological region providing a number of important ecosystem support services, such as breeding and nursing habitats, creating buffer zones for storm surge, and water filtration. However, many marsh areas have deteriorated both in health and extent due to a combination of anthropogenic and natural stressors, including nutrient pollution, turbidity, and urbanization. This study used NASA Earth observations to investigate the present and future health of wetlands in coastal Alabama. The datasets were derived from the United States Department of Agriculture Forest Service ForWarn Normalized Difference Vegetation Index (NDVI), which uses imagery captured by Moderate Resolution Imaging Spectroradiometer (MODIS). Additionally, data from Landsat satellites 5, 7, and 8 were used to provide higher resolution imagery over larger temporal scales to aid in land use and land cover classifications. The NDVI was then used in conjunction with data from the Coastal Change Analysis Program to classify marsh type, health, and extent over several decades. The data were then used for modeling of future marsh health using TerrSet Geospatial Monitoring and Modeling System Land Change Modeler software. Collectively, these analyses provided a holistic assessment of current and future marsh health for select watersheds over wide temporal and spatial scales. The Alabama Coastal Foundation can use these results to more efficiently direct restoration efforts to the most critically impaired watersheds.
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 2. Introduction
According to Section 404 of the Clean Water Act, wetlands are “areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas” (Clean Water Act of 1972, 2002). Wetland area, abundance, type, and quality are directly related to the health and abundance of many fish and other terrestrial and aquatic species. Their role in marine ecosystems is crucial, as over 50% of commercially harvested fish and 75% of waterfowl rely on wetlands at some stage of their life cycle (Stedman & Dahl, 2008). Coastal wetlands serve as natural barriers between land and water, helping to reduce soil erosion and storm surge intensity, and are highly productive both ecologically and economically. 
Coastal counties in the U.S. accounted for over 6.6 trillion dollars, coming in at just under half of the gross domestic product in 2011, and are home to 53% of the U.S. population (Mobile Bay National Estuary Program [MBNEP], 2008; Dahl & Stedman, 2013). The Mobile Bay is a critically important economic region in the Gulf of Mexico, accounting for over 3 billion dollars in annual revenue and providing nearly 60,000 jobs in the state of Alabama (Alabama Department of Tourism, 2010). 

2.1 [bookmark: _Toc334198721]Background Information
Background - Mobile Bay Watershed is considered to be the sixth largest river basin in the country, draining water for 75 percent of the state of Alabama. Existing research confirms that the bay is currently experiencing marked changes in sedimentation patterns, salinity, vegetation, and water inflow linking these endpoints to population growth and increase in urbanized area (Wang et al., 2014; Handley et al., 2007; Twilley, 2007). This is evidenced by the high number of restoration and surveillance efforts being conducted in many watersheds in the region including the Joe’s Branch section of D’Olive Watershed, Three Mile Creek, and the Fowl River (MBNEP, 2010; MBNEP, 2014; MBNEP, 2016). In addition, coastal Alabama is one of the fastest growing portions of the state with annual growth estimated at nearly 12 % (Unites States Census Bureau, 2015). This highlights a need to investigate the implications of increasing anthropogenic impacts on the region. Coastal Alabama and Mobile Bay have over 12,000 hectares of wetland environment (Handley et al, 2007). These coastal wetlands are typically resilient ecosystems that are able to endure a variety of natural events including hurricanes and disease by fluctuating size, foliage density, and species to overcome the disturbance (Sheridan, 2004). However, as human interaction with these areas continues to increase, the overall extent and health of coastal Alabama wetlands have deteriorated due to, amongst other things, land use land cover change, climate change, pollution, harmful algal blooms, industrial disasters, natural disasters, and destructive commercial fishing practices (MBNEP, 2016; Bianchette et al., 2009; Rodgers et al., 2009). Increasing avenues for pollutant introduction in these areas have led to additional concerns over the potential for eutrophication and accumulation of contaminants in surface water, submerged sediment, and aquatic species (Mcpherson et al., 2003; Conley, 2009; Lafabrie et al., 2013). Previous studies demonstrate that the overall photosynthetic activity of estuarine vegetation along the coast has declined in recent years (Khanna et al., 2013; Mishra et al., 2012). Synergistic reactions between natural and anthropogenic stressors have been linked to massive depletion of wetland habitat in the Mobile area, with some areas losing over 80% of their environment in the last 75 years (Estes et al, 2015; Sheridan, 2004; Short & Wyllie-Echeverria, 1996).

Study Area – The study area included Mobile and Baldwin counties, located in Coastal Alabama (Figure 1). Mobile and Baldwin counties cumulatively cover a surface area of 10,568 km2. The study area also includes portions of the Mississippi Sound, Mobile Bay, and segments of the Alabama and Tombigbee Rivers (Cowan, 1996).
[image: ][image: C:\Users\DEVELOP_USER\Desktop\Picture2.png]
Figure 1: Study area inside the state of Alabama

Study Period – The total study period ranged from 1987-2030. Marsh health was monitored using ForWarn scientific dataset (SDS) from 2000-2014. Marsh extent required the use of datasets and Landsat images from 1987-2016. Impervious surface estimates were based upon data sets and Landsat images collected from 2001-2015. Future marsh health, land use, and land cover estimates were also forecasted until the year 2030 (Figure 2).

[image: C:\Users\DEVELOP_USER\Desktop\Picture3.png]
Figure 2: Timeline of study period

2.2 Project Partners & Objectives
National Applications Addressed - This project addressed NASA’s Ecological Forecasting and Water Resources application areas by using NASA Earth Observations to analyze and estimate future conditions of the study area, so that our project partners can develop effective conservation strategies.

Project Partners - For this project our team worked with the Alabama Coastal Foundation and the Dauphin Island Sea Lab.

Project Objectives - The overarching goal of this project was to gauge marsh health trends in Mobile and Baldwin counties and associate that with marsh extent and urban development.
[bookmark: _Toc334198726]3. Methodology
3.1 Data Acquisition 
Pre-processed United States Department of Agriculture (USDA) Forest Service ForWarn Moderate Resolution Imaging Spectroradiometer (MODIS) data products spanning from the years 2000-2014 were acquired directly from the Forest Service for the analysis of marsh health using their preprocessed Normalized Difference Vegetation Index (NDVI) data. Individual data products each contained a SDS composed of NDVI images collected in 8-day periods, clipped to the study area, and organized by period and year. The ForWarn dataset also contained, among other products and parameters, pre-generated yearly integrals for NDVI of each year which were used in a quick comparison between years over the entire study area. The ForWarn data was already atmospherically corrected and had clouds removed, with the NDVI being the base value for the dataset.

Previously used NOAA Digital Coast Coastal Change Analysis Program (C-CAP) datasets from 2001, 2006, and 2010 and 2001, 2006, and 2011 National Land Cover Database (NLCD) datasets were used as raster files for Land Use Land Cover classifications and percent impervious surface estimations. NLCD and C-CAP images were compared to historic and recent satellite images collected by Landsat 5, 7, and 8 during a period ranging 1987-2016. Specifically images were downloaded from 1987, 1993, 2003, 2015, and 2016. These years were selected based upon image clarity and availability of images from each season, roughly in ten year increments. The year 1987 was selected because it contained the highest number of images without interferences. Although the year 2016 is not yet complete, it was selected because Landsat images from 2015- 2016 provided the most up to date representation of marsh health, marsh extent, and total imperviousness. USDA National Agriculture Imagery Program (NAIP) high resolution imagery collected in 2006 and 2015 was used in marsh extent and impervious surface analysis as reference data.

3.2 Data Processing
3.2.1 Marsh Health Data Processing
The NDVI period data was of primary interest to observe specific health patterns down to the week for the entire study area and also for individual watersheds and wetlands of interest. Marsh health was measured using the NDVI as a proxy for vegetative health. The NDVI is calibrated to highlight chlorophyll within the plants, where plants with more chlorophyll or areas with denser biomass appear brighter. Initially, two major considerations to take into account were mixed coverage pixels in the 250m resolution MODIS data and NDVI bias towards greener and denser vegetation appearing “healthier” than areas with different vegetation, more diversity, or with some bare land and/or water mixed into the pixel. Accounting for these required usage of the percent maximum (PMAX) statistic for every time period. This PMAX was calculated in two different ways for two different applications. The first PMAX, used for overall trends, was calculated by finding the maximum value attained by each pixel during the entire study period from 2000-2014. Each individual pixel within each 8-day period file was then compared against its own maximum value, negating NDVI bias. This was accomplished using the sub-model Figure 3 within the model Figure 4. These PMAX values were averaged over wetland masks for estuarine, palustrine, and overall wetland health. The second PMAX type gave a more comprehensive comparison for each period file to the identical period in other years. To do so, the maximum pixel value for all period 1 files, period 2 files, period 3 files, etc. for all 46 periods was found and then each individual pixel within each period was compared against its respective period maximum value. In other words, a pixel in period 11 of 2003 would be compared against the maximum value that pixel attained in every period 11 of the study period. This was accomplished using a modified version of the model in Figure 4, with 46 modified versions of Figure 3 within it, each containing the specific period NDVI files and period maximum file. These trends indicate whether each individual period was actually healthy for its time of year, negating the influence of the seasons and focusing more on the variation between years. The final results were masked for the study area for general trends and the HUC-12 watershed boundaries for individual watershed analysis. Average NDVI values for watersheds were also calculated using a similar model to Figures 3 and 4 as a more absolute health trend for comparison with the relative trends.

[image: \\NASA2\Users\DEVELOP_USER\Desktop\Deliverables\Presentation\Capture.PNG]
Figure 3: Generic percent maximum submodel used for trends within individual marshes.
[image: \\NASA2\Users\DEVELOP_USER\Desktop\Deliverables\Presentation\Capture1.PNG]
Figure 4: Model that takes all outputs from the percent maximum submodel and merges them into one file for use in Excel.

3.2.2 Marsh Extent Data Processing 
Through DEVELOP National Program Python Module (Dnppy) software, these data were processed and converted to top-of-atmosphere reflectance. The software takes factors such as day, month, time of acquisition, and sun elevation angle as parameters in order to calibrate the illumination on every image. The three images were then stacked, creating a 9 band false color three-composite-date raster for each year. The bands used are shown in Table 1:

Table 1: Landsat band combinations
	Data Type
	RGB Color Composite
	Bands

	Landsat 5 - TM
	4, 5, 3
	Near Infrared, Short-Wave Infrared, Red

	Landsat 7 - ETM+
	4, 5, 3
	Near Infrared, Short-Wave Infrared, Red

	Landsat 8 - OLI
	5, 7, 4
	Near Infrared, Short-Wave Infrared (SWIR) 2 , Red



After clipping the Landsat image to our study area, ArcMap’s Segment Mean Shift tool was applied to fragment and simplify the image into segments (Figure 5). A land cover map was obtained through maximum likelihood supervised classification.

[image: C:\Users\DEVELOP_USER\Desktop\mapaTP.png]
Figure 5: 1987 band composite (left) and segmented image (right)

To minimize the effects of confused pixel, the reject fraction of the classification was 5%. Marshes were then masked out from each land cover map, and these data were used to create seven different marsh extent maps.

3.2.3 Impervious Surfaces Data Processing 
Impervious surface growth was measured using the NOAA Impervious Surface Analysis Tool (ISAT) and the Normalized Difference Impervious Surface Index (NDISI). Landsat images selected for impervious surface analysis were processed using procedures outlined in Xu et al., 2010 by converting the thermal band (Landsat 5 band 6; Landsat 8 band 10) to 8 bit data by converting the digital numbers (DN) between 0-255 using the copy raster function in Arc Map. Following conversion to 8 bit DN no further correction was needed. NDISI images were then created using Landsat 7 and Landsat 8 images collected in 2003 and 2015 respectively. The NDISI enhances the reflectance of the thermal infrared band (TIR) while masking the reflectance of the near infrared (NIR), visible (VIS), and middle infrared bands (MIR) (Xu et al., 2010). The formula for the NDISI is: 

NDISI: TIR -[(VIS1+NIR+MIR2)/3]
 TIR +[(VIS1+NIR+MIR2)/3]

This formula was designed for use with the Raster Calculator Tool in Arc GIS. Because Landsat 5 and 8 do not have bands that detect in the MIR range, In lieu of this the shortwave infrared (SWIR) bands (Landsat 5 band 7; Landsat 8 band 7) were used in place of the MIR bands in the equation because they are the bands closest to MIR range. C-CAP, Landsat, and NLCD products all contained individual data files that exceeded the study area. To address this, watershed and county line shapefiles were downloaded from the U.S Geological Survey and the USDA Watershed Boundary Dataset (WBD). All data files used were clipped down to include only the study area prior to any analysis.

3.3 Data Analysis
3.3.1 Marsh Health Analysis
The excel files produced by the aforementioned models allowed for a rapid assessment of marsh health trends within the study period. Despite being unable to directly extrapolate absolute marsh health, the time series plots were able to determine relative health trends, with a particular sensitivity to meteorological phenomena and climatological events. Linear trend lines determined the overall health pattern for each individual watershed and these were plotted alongside the health time series lines. The general trends were supplemented by the period trends to identify specific periods most impacted by events and to what degree.

3.2.2 Marsh Extent Analysis
The data were then exported to Excel, where it was used to generate a marsh extent trend line within the study period. Considering that each Landsat has 30m x 30m pixels, marsh extent (in m2) was calculated by multiplying the number of pixels to 900. Following this step, the area was converted to acres.

3.3.3 Impervious Surfaces Analysis 
ISAT was used to calculate imperviousness for the years 2001, 2006, and 2011. ISAT requires impervious surface data (NLCD), land cover data (C-CAP), and a land area shapefile (HUC-12 Mobile and Baldwin County watershed shapefiles), however different data inputs can be used with the software. With land cover and land use data ISAT is able to calculate the percent imperviousness, impervious surface area, and the level of risk present to water bodies and displays this data using the chosen land area shapefile. Ultimately the ISAT tool produces color coded maps estimating risk from impervious surfaces in a given area based upon the percent imperviousness in a given area. Areas that appear green have estimated impervious surfaces percents below 5 percent and are considered protected. Yellow areas have impervious surface averages between 5-10 percent meaning these areas may experience some degradation to water quality and should take preventative action. Red areas have impervious averages that exceed 10 percent. Within these areas intense impacts to water quality and hydrological cycles are likely. Calculated ISAT impervious surface estimates were then exported into excel for further analysis of percent change, average, growth trends, and total area.  
The NDISI was used to visually display the growth of impervious surfaces within select wetland areas and the intensity of imperviousness. Highly developed impervious areas have values closer to 1. Less impervious areas have values closer to 0. NDISI’s were produced for three Landsat 5, 7, and 8  images collected during late winter, late spring-early summer, and  late fall-early winter of 2003 and 2015. This was done to create a layer stack to compile average values for each land cover type (e.g. impervious surface, agricultural fields, etc.). Images were selected based upon clarity and temporal spacing to previous images of the same year. The Minus Tool was then used to identify areas of new impervious surface. The Minus Tool Subtracts the value of the second raster layer from the value of the first raster layer on a pixel by pixel basis, producing an image displaying differences in imperviousness for chosen years.  These images were then compared to NAIP imagery for preliminary validation of results. 
[bookmark: _Toc334198730]4. Results & Discussion
4.1 Results
4.1.1 Marsh Health Results
[bookmark: _GoBack]The Bates Field Mobile Regional Airport National Weather Service Forecasting Office (KMOB) recorded the two driest years and coldest winters in the last 40 years during the 2000-2014 time period, as well as observed the impacts of two major tropical cyclones during that time. This created a bias towards observing impacts of meteorological and climatological abnormalities and likely masked the impacts of anthropogenic events and encroachment. Analysis of the marsh health trends indicated that the overall wetland health across the study area is declining. Palustrine wetlands seem to be declining at a more rapid pace than the estuarine wetlands, likely due to the different flora that populates them (Figure 6). Although differentiating the meteorological phenomena from the anthropogenic influence is very difficult, the overall declining trends seem to indicate an urbanization undertone. Hurricanes, winters, and droughts appear to have to greatest impact on the health of the wetlands, particularly given the timing in which they occur. (Figure A1). The climatological preference for hurricanes to occur in the late summer and fall is around the same time as the second growing peak for the wetlands, particularly the estuarine marshes. This is also possibly coincident with the warm Gulf of Mexico temperatures during this time as the water temperature tends to peak in late August to September. These warmer ocean waters may promote marshland growth, however they also favor tropical cyclone development. This was prominently evidenced in the Little Lagoon watershed, where Hurricane Ivan made landfall in mid-September just on the western fringes of the watershed (Figure A2). This placed Little Lagoon and most of Baldwin County in the path of the eastern eye wall, the most destructive part of a hurricane, as it traveled north-northeastward. Little Lagoon and nearby Oyster Bay took the brunt of the blow, with massive drops in PMAX observed immediately afterward (Figure 7). Following Ivan was Hurricane Katrina in late August of 2005. Katrina had very significant impacts further westward in Mississippi and Louisiana, however the extreme western watersheds of the study area were affected, with the Bayou Heron-Grand Bay watershed showing a large drop in PMAX immediately afterwards (Figure 8). Though the landfall of Katrina was too far west to cause measurable wind damage to most of the study area, the storm surge on the eastern side of Katrina was considerable in Mobile Bay. Very large hurricanes such as Katrina tend to form proportional amounts of storm surge due to their large wind field, and the eastern side of these storms has the strongest winds directed parallel to the storm motion which creates the most storm surge. The Lower Chasaw River in the north-western point of Mobile Bay appeared to have taken a hit from the storm surge following Katrina, being near the point of the bay where storm surge is typically the strongest as it gets funneled down the shore. Interestingly, nearby watersheds Grand Bay and the Tensaw-Appalachee River Delta were mostly unaffected, possibly protected by the highway 90 causeway and the rivers’ significant discharge shielding the wetlands from salt water. Winters also had a significant impact on the wetland health. The two cold winters within the study period were the winters of 2009-2010 and 2013-2014. The impact of the 2009-2010 winter is very pronounced for most all watersheds in the study area and for the overall wetland trends (Figure 6). This is likely a result of the timing and duration of the cold, which primarily occurred during and well into the spring of 2010. Temperatures during this time bottomed out in February, with an average temperature 7.9 ºF below normal for the month. Low temperatures persisted through March and into early April before returning to a normal pattern. This extended duration of cold during the spring in the primary growing season possibly led to a delay and loss in new foliage development and caused the single largest drop in PMAX for the overall trends. Despite 2014 being one of the coldest years on record with a very uncommon freeze event occurring in late January, the coldest temperatures were primarily early on and had warmed somewhat by February and March, minimizing impacts on new growth. Lastly, the two droughts observed occurred during the years of 2000 and 2006. 2000 and 2006 were the two driest years in recent history with 20.35 and 16.74 inch deficits respectively (Figure A1). Although 2000 was drier, it was a more gradual drought which did not reach full strength until later into the year. The critical growing time for the wetlands from March to May in 2000 was 5.26 inches lower than normal, but in 2006 that same time period had a 12.12 inch deficit and the driest March on record at 0.24 inches. The 2006 drought was followed by another drier than normal year in 2007. The deficit in 2007 was 10.84 inches (Figure A1), but 7.36 inches of that total occurred in the March to May growing period. This drought compounded the problems for watersheds on the far eastern and western sides of the study area, still reeling from Hurricanes Katrina and Ivan, respectively. The entire study area however was impacted by the drought, with all trends experiencing a significant drop in PMAX during 2006 and 2007.
	The primary limitations on these data were the large pixel size, limited temporal extent, and computing resources. Large pixels reduce the detail and clarity of the data and increase the amount of mixing in each pixel, leading to an inaccurate NDVI for areas near water, bare soil, and urbanization. This is also problematic when using higher resolution data for the wetland masks as the conversions between them can be messy. The short time range led to an increased bias towards the meteorological and climatological extremes, and also was statistically too short to create a conclusive trend line. Finally, the models ran consumed a significant amount of processing time, which limited the amount of modeling that could be done.

[image: ]
Figure 6: Estuarine vs. Palustrine overall health trends for the entire study area.

[image: ]
Figure 7: Little Lagoon wetland health trends emphasizing the impacts of Hurricane Ivan in 2004. 
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Figure 8: Bayou Heron-Grand Bay watershed emphasizing the impacts of Hurricane Katrina in 2005

4.1.2. Marsh Extent Results 
Seven land cover maps were produced, containing seven different land covers: water, woody wetland, non-woody wetland (marshes), urban, upland forest, upland herbaceous, and barren (Figure 9).

[image: C:\Users\DEVELOP_USER\Desktop\Untitled.png]
Figure 9: Land Cover Map (1987)

The cover types were chosen in order to match a previous land cover study made on the same area by Jean Ellis (Ellis, 2008). From the resultant land cover maps, it can be noticed particularly in Gaillard Island that there is misclassification in the urban class due to highly overlapping spectral reflectance signature between urban and flooded areas. To corroborate if the misclassification was significantly large, accuracy assessment was carried out over the classified image to find overall accuracy above 80% for all land cover maps. The accuracy details can be seen on Table 2:

Table 2: Accuracy assessment for all land cover maps
	Classes\Years
	1987
	1992
	1996
	2001
	2006
	2011
	2016

	Water
	100.0%
	100.0%
	100.0%
	100.0%
	100.0%
	100.0%
	100.0%

	Woody Wetland
	84.4%
	91.0%
	91.3%
	82.9%
	72.4%
	68.8%
	75.7%

	Non-Woody Wetland
	100.0%
	97.0%
	98.4%
	98.5%
	98.3%
	100.0%
	95.5%

	Urban
	90.4%
	92.9%
	83.3%
	95.3%
	94.8%
	86.8%
	85.7%

	Upland Forest
	87.1%
	86.6%
	65.2%
	85.1%
	69.4%
	95.3%
	76.1%

	Upland Herbaceous
	93.0%
	84.1%
	75.9%
	90.5%
	78.3%
	83.8%
	87.0%

	Barren
	100.0%
	75.0%
	76.9%
	62.5%
	66.7%
	69.2%
	58.8%

	Overall
	92.3%
	91.2%
	83.5%
	90.7%
	83.7%
	86.5%
	85.3%










After everything else was masked out, the calculation of marsh extent was based upon the number of pixels classified as marshes. The extent change for all the years can be seen on Figure 10:


Figure 10: Marsh extent throughout the years from 1987 to 2016

From the trend line, marsh extent reasonably increased between the years of 1987 and 2001. After that period, in 2006, the extent dropped significantly. As stated previously, Mobile and Baldwin Counties were affected by a few natural disasters in that time frame. The most important ones were probably Hurricanes Ivan, in 2004 and Katrina, in 2005. This may indicate that the marshes took a direct hit by the hurricanes and were distressed by these phenomena.
Afterwards, marsh extent declined again between 2006 and 2011. That might have been a sign that the area was again influenced by a stress factor. Historic data shows that Alabama suffered with severe to extreme droughts in 2006 and 2007, and Mobile had a record cold winter in 2010. Those factors could negatively impact the health and extent of the marshes. On the other hand, between 2011 and 2016, marshes show signs of recovery, as the overall area increased again for the first time since between 1996 and 2001. This expansion can be a sign that the marshes are being positively affected by conservation efforts made by national agencies and/or are a sign that they are naturally regenerating.

4.1.3 Impervious Surface Results
Analysis of ISAT data suggested that impervious surfaces increased by a total of 25 percent across the entire study area from 2001-2011 which correlates to over 9000 acres of new impervious surfaces. Additionally, within ACF priority watersheds, impervious surfaces increased by an average of nearly 23 percent, however individual watersheds recorded higher growth rates. For example, the Bon Secour Watershed in Baldwin County experienced a 79 percent increase in imperviousness from 2001-2011. Increases in urban extent aligned closely with decline in marsh area observed during the same period. 
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Figure 11: ISAT map estimates for study area. Growth was centralized around coastal regions and increased linearly from 2001-2011
[bookmark: _Toc334198734]Figure 11 displays impervious surface estimates produced by the ISAT tool for 2001, 2006, and 2011. Urban growth was most concentrated along coastal regions of Mobile and Baldwin County. This presents imminent risk to many marsh and wetland areas due to their proximity to coastal regions. Studies suggest that impervious surfaces not exceed 10 percent to prevent impacts to water quality (Bauer et al., 2008; New Hampshire Estuaries Project [NHEP], 2007). At the beginning of the study period, only four watersheds in the study area exceeded this limit. However, 2016 impervious surface estimates project that four additional watersheds now exceed this metric. Table 3 displays all watersheds that exceed 10 percent imperviousness. Two watersheds in the study area (Three Mile Creek and Dog River) now exceed 20 percent imperviousness. Above 25 percent, impacts to hydrologic cycles and water quality become severe and are difficult to remediate (NHEP, 2007) highlighting a critical need for restoration in these watersheds. Although many watersheds in the study area remain below 10 percent imperviousness, it is important to note that upward trends in impervious surface growth were observed in nearly every watershed.
	NDISI results aligned well with estimates produced by ISAT and showed tremendous growth in portions of the study area. Figure 12 displays the change in impervious surfaces in the metropolitan area of Mobile from 2003-2011. Areas of with intense growth of impervious surfaces appear red.
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Figure 12: Minus Tool NDISI calculation displaying areas of impervious surface change.













Table 3: Watersheds above 10 percent surface imperviousness
	Watersheds Exceeding 10 Percent Imperviousness 
	Impervious Percent (2016 Estimated)

	Upper Dog River
	22

	Toulmins Spring Branch-Three Mile Creek
	0

	Halls Mill Creek
	14

	Deer River
	12

	Lower Chasaw Creek
	12

	Lower Dog River
	12

	Dauphin Island
	11

	Little Lagoon
	10



Results from NDISI analyses aligned closely with ISAT calculations displaying marked changes in impervious surface growth and intensity. 

4.2 Errors and Uncertainty 
4.2.1 Marsh Health
	The 250m pixel size of MODIS means that most pixels will be mixed cover, containing different types of vegetation, varying amounts of bare soil, and water. This can cause the NDVI to become skewed over the pixel. Also, tidal influences could affect the pixels along the water which could cause a low or high bias in the NDVI based on the tide. NDVI is not a perfect measure of vegetation health and thus does need to be validated with ground truth observations.

4.2.2 Marsh Extent
Analysis of the results showed that there were some mixed pixels on the classification. The 30 meter pixel size also corroborates with that, because one pixel frequently represents more than one type of land cover. Even with the accuracy assessment, a pixel-based accuracy assessment is concerning and has some potential problems. That happens because point sampling is subjected to probability sampling concepts (Stehman, 1998), and because accuracy errors occur mainly on polygon edges. An accuracy assessment based on polygons could have been better in this case.

4.2.3 Impervious Surfaces 
Although the ISAT tool has been found to estimate impervious surface areas with high levels of accuracy (Civco et al., 2006) it is only as reliable as the land classification data inputs. However it is possible to correct for these areas by comparison to other impervious surface estimation techniques, “ground truthing”, and using high resolution satellite imagery. While the maps produced by ISAT are useful on a regional scale for assessing impervious surface growth and risk, it does not provide a spatial reference to the specific locations of high imperviousness areas further highlighting a need for ground truth validation when employing this method. 
The NDISI performed well in urbanized areas of Mobile and Baldwin Counties. The NDISI is however sensitive to picking up areas of bare land and agriculture. These areas behave similarly to impervious surfaces in their ability to absorb and reflect heat thus leading to varying levels of distortion in images. To remedy this, Landsat images collected during different harvest periods were stacked into composite bands in hopes of finding a threshold value for each landcover type. However, this method was ineffective as several agricultural fields yielded values similar to intensely developed areas. Due to this, the NDISI is not recommended for use in regions with large agricultural areas, unless the specific purpose is mapping agriculture and urban areas collectively. 




4.3 Future Work
Future studies aimed at assessing marsh extent would be aided by using datasets with more temporal and spatial resolution. Specifically using higher resolution satellite imagery and measuring marsh extent in one year intervals.
Though this study provided extensive data on the growth impervious surfaces in the study area, it is difficult to separate the impacts of urban growth from the impacts of weather events and other natural and anthropogenic phenomena on marsh health. Because of this, future studies aimed at ground truth validation and in situ monitoring are highly recommended. The ISAT Tool is a great tool for preliminary impervious surface assessment on regional scales, but it is only as accurate as the land cover/land use data it is provided with, however the tool remains versatile and future studies could explore the ability of the tool to integrate more data points such as population, compacted surface, and even agricultural areas. The sensitivity of the NDISI to agricultural areas, can present problems for studies aimed strictly at mapping impervious surfaces. However future studies may look into the application of the method in measuring the impacts of agricultural runoff.
[bookmark: _Toc334198735][bookmark: _Toc334198736]5. Conclusions
Our team was able to observe declining trends in marsh extent and health throughout the study period. Impervious surfaces increased during the study in close alignment with declines observed in marsh extent. Although noticeable declines in marsh extent were observed during the study period, latter trends showed evidence of recovery though specific causes of this recovery are not fully understood. Health trends seemed to be most impacted by weather events that occurred between 2004 and 2011, but it is difficult to separate the impacts of natural stressors from anthropogenic stressors thus highlighting a need for more research in the area. 
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[bookmark: _Toc334198738]8. Content Innovation
Content Innovation #1
Featured Multimedia: Mobile Bay Eco Forecasting II VPS

Content Innovation #2
Interactive Map Viewer
https://drive.google.com/open?id=19dF91hi_3AtaylameCbhmVDC0mc&usp=sharing
<iframe src="https://www.google.com/maps/d/u/0/embed?mid=19dF91hi_3AtaylameCbhmVDC0mc" width="640" height="480"></iframe>
Content Innovation #3
Inline Supplementary Material 
9. Appendices
[image: ]
Figure A1: Entire study period for all datasets with annual rainfall (blue) and temperature (red) deviations from normal.
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Figure A2: The PMAX for the entire study period immediately following Hurricane Ivan, with Ivan’s path plotted.
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Figure A3: Marsh Extent (1987)
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Figure A4: Marsh Extent (1992)
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Figure A5: Marsh Extent (1996)
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Figure A6: Marsh Extent (2001)
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Figure A7: Marsh Extent (2006)
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Figure A8: Marsh Extent (2011)
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Figure A9: Marsh Extent (2016)

Table A1: Landsat Acquisition Dates
	Satellite
	Lansdat Dates

	Landsat 5
	Jan-02-1987

	
	Apr-24-1987

	
	Nov-18-1987

	
	Dec-29-1987

	
	Mar-04-1992

	
	Apr-21-1992

	
	Sep-12-1992

	
	Oct-14-1992

	
	Feb-13-1996

	
	May-12-1996

	
	Apr-17-1996

	
	Feb-08-2006

	
	May-30-2006

	
	Nov-22-2006

	
	Mar-25-2011

	
	Jun-13-2011

	
	Aug-16-2011

	
	Oct-03-2011

	Landsat 7
	Mar-05-2001

	
	Jun-17-2001

	
	Aug-04-2001

	
	Sep-29-2001

	
	Jan-07-2003

	
	Feb-24-2003

	
	May-30-2003

	Landsat 8
	Feb-01-2015

	
	Apr-21-2015

	
	Oct-14-2015

	
	Jan-19-2016

	
	Mar-23-2016

	
	Apr-08-2016

	
	Apr-24-2016



1987	1992	1996	2001	2006	2011	2016	23753.511755999996	24081.3212489998	23911.856640000002	24134.473534500001	22020.391417500003	21251.128842000009	21683.463750000021	Years
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