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1. Abstract  
Flooding is the most common and costly natural disaster in Kentucky, with major flood events in 2022 and 
2023 highlighting the need for flood risk assessment. In partnership with the National Weather Service 
Jackson and Paducah Forecast Offices and the Kentucky Climate Center, we mapped flood risk in Kentucky 
using a multi-hazard approach that considered two dimensions of risk: flood susceptibility based on a 
weighted combination of seven physical factors and flood vulnerability based on 13 socioeconomic and 
infrastructure factors. We additionally analyzed NASA Soil Moisture Active Passive (SMAP) observations of 
surface soil moisture to explore the utility of SMAP observations for future analysis of flood risk. By 
analyzing flood susceptibility, we found that with equal rainfall, western Kentucky generally displays a higher 
propensity to flood than eastern Kentucky. In contrast, our flood vulnerability analysis indicated that more 
vulnerable areas were generally concentrated in the eastern part of the state. Through a combined perspective, 
our flood risk analysis identified much of the state as having moderate degrees of flood susceptibility and 
vulnerability. Our parallel analysis of antecedent soil moisture found that SMAP soil moisture levels were 
variable in the months leading up to each flood event but were drier than normal in the month prior to the 
2023 event, as shown by negative soil moisture anomalies. These results were limited by challenges with 
weighting input parameters and a lack of validation but overall demonstrate the feasibility of using GIS and 
Earth observations for mapping flood risk and soil moisture.  
 
Key Terms: flood risk, flash flooding, soil moisture, SMAP, analytic hierarchy process. 

2. Introduction 
2.1 Background Information 
Flooding is the most common and costly natural disaster in Kentucky, with annual flood damage totaling 
over 40 million dollars (Division of Water [DOW], 2018, p. 1). Flood events typically occur annually across 
the state, and the frequency and severity of such events are projected to increase over time due to climatic 
changes in weather patterns including increased annual maximum and mean river flows (DOW, 2018, p. 9). 
Kentucky has the most navigable water miles in the contiguous U.S. and contains a total of 89,431 miles of 
rivers and streams (DOW, 2018, p. 1; Ecological Society of America [ESA], 2024). During periods of intense 
precipitation, overflow from this vast river system contributed to recent flash flooding events in July of 2022 
and 2023. The 2022 flood in eastern Kentucky was classified as a 1-in-1000-year precipitation event and 
resulted in 44 deaths and over 9,000 damaged homes, with 13 eastern Kentucky counties declared as federal 
disaster zones (Jackson, KY Weather Forecast Office [Jackson], n.d.; Klesta, 2023). The 2023 flood in 
western Kentucky was also classified as a 1-in-1000-year precipitation event, with the Mayfield, Kentucky 
Mesonet station measuring a record-breaking 11.28 inches of rain in 24 hours on July 18 and 19 (NOAA 
National Weather Service Hydrometeorological Design Study Center, 2017; Paducah, KY Weather Forecast 
Office [Paducah], n.d.).  

With major flooding events expected to increase, predicting floods and warning communities are critical tasks 
for Kentucky weather service offices. However, making such predictions is difficult because impacts from 
flooding vary across the state based on topographic factors. Eastern Kentucky is mountainous, with high 
elevations and communities built in valleys that are prone to flash flooding (Figure 1). Western Kentucky is 
generally flat, with flood plains that typically see slower river flooding (Mahmood et al., 2019, p. 1755). 
Despite the elevation differences, Kentucky’s extensive river system traverses the entire state, making it 
essential to consider regional differences and the greater landscape when characterizing flood risk.  

To examine the regional differences and characterize flood risk across the state, we examined flood 
susceptibility, which estimated the propensity of flooding, based on seven physical factors including 
topography and river proximity. We analyzed susceptibility parameters with an analytic hierarchy process 
(AHP), a method well-suited for regional studies, which weighs factors based on their contribution to 
flooding according to expert knowledge (Tehrany et al., 2014). We performed a preliminary comparison of 
our susceptibility map with historical inundation data from the Global Flood Database (GFD; Tellman et al., 
2021a; Tellman et al., 2021b) . We also analyzed flood vulnerability, which considered the impact of flooding 
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on populations based on socioeconomic factors and infrastructure concerns. These factors allowed us to 
locate frontline communities, those most exposed to the effects of floods. After examining susceptibility and 
vulnerability separately, we combined the two perspectives to comprehensively assess flood risk across the 
state. 

In a parallel analysis, we used NASA Soil Moisture Active-Passive (SMAP) remote sensing data to examine 
soil moisture content prior to the flood events of 2022 and 2023. Studies have found that because soil 
moisture affects groundwater recharge and run-off ratios, antecedent conditions “can explain the difference 
between minor and major flooding events,” making satellite observations of soil moisture a potentially 
valuable tool for anticipating floods (Ahlmer et al., 2018, p. 2). Combined with flood risk mapping, 
antecedent soil moisture may provide an additional dimension to flood management in Kentucky. 

 

Figure 1. The study area for this project is the entire state of Kentucky. The state’s major rivers and elevation 

are shown in this map. 

2.2 Project Partners and Objectives 
Our team partnered with the Kentucky Climate Center (KCC) and the National Oceanic and Atmospheric 
Administration’s (NOAA) National Weather Service (NWS) Forecast Offices in both Paducah and Jackson, 
Kentucky. As Kentucky’s official climate office, the KCC collects and distributes weather and climate 
information, while also supporting research and community outreach. The KCC also maintains the Kentucky 
Mesonet, a growing statewide weather and climate observation network with sensors at over 70 locations 
(Mahmood et al., 2019, p. 1753). The NWS provides weather, water, and climate outreach information 
through data, forecasts, and warnings, with coverage of every county in the United States. The Jackson and 
Paducah offices oversee the eastern and western regions of Kentucky, respectively, including the areas that 
experienced severe impacts from the 2022 and 2023 flood events.  

Our partners work to increase awareness of flood risk in their communities, and we sought to provide 
informational products to assist in this mission. We created a static flood risk map incorporating flood 
susceptibility and vulnerability to better inform our partners and support their community outreach efforts. 
We also created a pamphlet to allow for more efficient communication with emergency managers and thus 
frontline communities in the state. Lastly, the examination of antecedent soil moisture before the 2022 and 
2023 floods allowed us to explore the feasibility of space-based platforms for flood risk assessment, which 
could be combined with Mesonet data to improve spatial coverage of weather information across the state. 
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3. Methodology 
3.1 Data Acquisition  
3.1.1 Susceptibility Data 
We identified seven susceptibility factors from preliminary literature review and expert consultation and 
included them in the susceptibility map (see Appendix A, Table A1). We imported all susceptibility data 
directly into ArcGIS Pro from the ArcGIS Online Portal or ArcGIS Living Atlas. Distance to Rivers 
considers the distance of each point from the nearest river and was included due to the risk of rising waters in 
periods of heavy rainfall. The Topographic Wetness Index (TWI) measures the effects of slope, aspect, and 
elevation on hydrologic processes (Sørensen et al., 2006). Kentucky’s terrain is also affected by karst areas and 
mining. Karst areas are areas where bedrock dissolves, forming features such as sinkholes and caves (National 
Park Service). Karst springs are prone to overflowing during extreme events, leading to flooding (de Waele et 
al., 2011). Distance to Mines was included based on flood risk from mine slurry impoundments. Land Cover, 
which includes land categories such as forests, agricultural areas, and developed areas, reflects the fact that 
water more readily drains through highly permeable materials such as forest soil than through impermeable 
surfaces such as asphalt or concrete. Drainage Class is a categorization of soil types that considers how 
quickly water moves through the soil, which was included based on the assumption that areas with poorly 
drained soils are more prone to flooding (Soil Science Division Staff, 2017). Unlike Land Cover, Drainage 
Class primarily considers the natural condition of underlying soils, rather than human-built infrastructure. 
Hydrologic Group is another soil metric that groups soils based on runoff potential when inundated by large 
storm systems, regardless of vegetation coverage (Soil Science Division Staff, 2017). We included this 
parameter to account for runoff's contribution to flooding.  

3.1.2 Vulnerability Data 
For our vulnerability map, we collected ten demographic factors (see Appendix A, Table A2) from the U.S. 
Census 2022 Planning Database, which includes data from multiple census surveys. We used data at the tract 
level because it was the highest spatial resolution of census data that contained all the desired variables. After 
downloading the data as a single CSV file, we removed all non-essential columns. The ten variables were 
selected in consultation with project partners and their knowledge of flood exposure in Kentucky. We 
included poverty, population 65 and over, population under 5, and disability as percentages of population in 
each census tract (U.S. Census Bureau, 2024). We included a factor for manufactured homes (referred to as 
mobile homes by the Census Bureau) as a percentage of homes in each tract since manufactured homes lack 
foundations and are thus vulnerable to displacement and damage in floods. We also included four factors that 
influence the ability to receive information and warnings about flooding: no computer access, no telephone 
service, no internet access, and limited English speaking each as a percentage of households in each tract. 
Additionally, we included population density to account for the higher number of people at risk in more 
populated areas. We also obtained a census tract feature layer entitled “Poverty Inequality of Kentucky 
Census Tracts 2020_WFL1” and a county feature layer entitled “Kentucky_County_polygons” both from the 
ArcGIS Online Portal (Kentucky Transportation Cabinet, Division of Planning, 2021; U.S. Census Bureau, 
2022b). In addition to census demographic data, we included the number of fire stations, hospitals, and 
bridges in each polygon as variables, since people living further from medical care and emergency services 
may be more vulnerable in emergencies, and damage to bridges during floods can disrupt evacuation. 
Hospital data were collected from the KyGovMaps Open Data Portal, bridge location data were acquired 
from the Kentucky Geography Network, and fire station data were collected from the Homeland 
Infrastructure Foundation-Level Data (see Appendix A, Table A3). 

3.1.3 Soil Moisture Data 
We acquired soil moisture data from NASA’s Soil Moisture Active Passive (SMAP) sensor via the Google 
Earth Engine data catalog (Reichle et al. 2022a; Reichle et al. 2022b). We used the SMAP L4 Global 3-hourly 
9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis - Update Version 7. 
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3.1.4 Comparison of Susceptibility with Global Flood Database Data 
We acquired the full set of GFD data from the Google Earth Engine data catalog (Tellman et al., 2021a; 
Tellman et al., 2021b). The data include 33 flood events in Kentucky from 2001 to 2018 identified based on 
flood records maintained by the Dartmouth Flood Observatory. One pair of flood events had overlapping 
dates and regions, despite the GFD categorizing them as two distinct events. The GFD flood extent maps 
were derived using data from NASA’s MODIS Terra and Aqua sensors. 

3.2 Data Processing 
3.2.1 Susceptibility 
We downloaded all the layers for susceptibility as web layers and converted them to feature layers using the 
Export Features function under the Data tab in ArcGIS Pro to allow editing. We then converted the layers 
for drainage class, hydrologic group, and karst areas to raster using the Feature to Raster (Conversion) tool as 
raster format was required for reclassification. We performed a distance analysis on the river and mine layers 
to determine distance from the features throughout the state using the Distance Accumulation (Spatial 
Analyst) tool. Since our scale, the entire state of Kentucky, was quite large, we used a geodesic method to 
account for curve of the Earth and input the Kentucky 5ft Digital Elevation Model (DEM) to account for 
surface cost in distance. The topographic wetness index (TWI), a means of combining upslope area with 
slope to quantify topological effects on the local hydrology, was calculated through the following equation, 
where (a) is the contributing upslope area raster and (tanβ) is the slope raster (Sørensen et al., 2006; Ballerine, 
2017; Equation 1).    

𝑇𝑊𝐼  =  𝐿𝑛 (
𝑎

tan𝛽
) 

(1) 
To calculate TWI using ArcGIS Pro, we used the 5ft DEM raster with cell size adjusted to columns of 
571,4222 and rows of 249,716 to 15,000 and 4,100, respectively, to meet ArcGIS Pro’s image service’s 
maximum cell size requirement for geoprocessing. Following a common protocol, we created the TWI layer 
through a series of spatial analyst tools (O’Donohue, 2023). Once all the raster layers were prepared, we 
reclassified each layer on a one to five scale using the Reclassify (Spatial Analyst) tool. The reclassification 
groups described in Appendix B, Table B1 were based on former susceptibility analyses and descriptions of 
the factors’ impacts on flooding found through literature. The distance to rivers layer was reclassified using 
five equal intervals under the assumption that impact from rivers decreases linearly with distance if elevation 
is ignored. Distance to mines was classified using a quantile scale under the assumption that impact on 
flooding is only strong very near the mines.  
 
3.2.2 Vulnerability 
For vulnerability, we created a population density variable by dividing each tract’s total population by the tract 
area. The remaining nine variables collected from the Census required no additional processing. Variables 
representing the count of selected infrastructure (bridges, hospitals, and fire stations) within each tract were 
generated using the Summarize Within (Analysis) tool. These steps were then repeated at the county level; 
however, since county-level data are not provided by the census, we summed the tract-level counts by county 
for each variable and divided by the appropriate county total depending on the census’s formula for 
calculating each variable (see Appendix, Table A4). All 13 variables were then reclassified at the tract- and 
county-level on a one to five scale using the Reclassify Field (Data Management) tool and the quantile 
method of reclassification. For all variables excluding hospitals and fire stations, a larger number or 
percentage corresponds with higher vulnerability, or a 5. The quantile method was chosen so that the values 
reflect the relative vulnerability of a tract/county to others in the state.  

3.2.3 Soil Moisture 
We used Google Earth Engine to create gifs and charts displaying SMAP L4 surface soil moisture data 
before, during, and after the two major floods in 2022 and 2023. For the July 2022 flood in eastern Kentucky, 
the study period was for June 25 through August 4, 2022. Then for the July 2023 flood in western Kentucky, 
the study period was for June 19 through July 26, 2023. For the charts, we defined smaller areas of interest 
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within our study area boundaries to pinpoint soil moisture behavior in the regions where major flooding 
occurred (Figure 2). For the 2022 flood event, we used Breathitt, Clay, Floyd, Johnson, Knott, Leslie, Letcher, 
Magoffin, Martin, Owsley, Perry, Pike, and Wolfe Counties based on the federal disaster declarations for the 
event (The White House, 2022). Whitley county was also included based on additional evidence suggesting it 
was seriously affected (Kentucky Governor Andy Beshear, n.d.). For the 2023 Flood event, we used Carlisle, 
Fulton, Graves, and Hickman Counties, which declared states of emergency during the flood event according 
to Kentucky news site WYMT (Ruch, 2023). The same article notes that Lee County also declared a state of 
emergency, but since Lee County is in the eastern part of the state and thus completely disconnected from the 
rest of our study area in western Kentucky, we omitted it in our quantitative analysis.  
 

 
Figure 2. The study areas for our soil moisture analysis are shown. The 2022 study area includes 14 counties in 

eastern Kentucky impacted by the 2022 flood event, while the 2023 study area includes four counties in 
western Kentucky impacted by the 2023 event.  

For each region, we used Google Earth Engine to filter the SMAP L4 surface soil moisture band data by the 
study period dates and export the entire three-hourly dataset for the study period. In addition to the absolute 
soil moisture values, we also created charts of soil moisture anomaly data for the same time periods and areas 
of interest. The anomaly values are derived from the experimental derived SMAP L4 surface soil moisture 
anomaly band product, which was created for Google Earth Engine. They represent the difference of the 30-
day average of SMAP L4 surface soil moisture band values centered on each date and time compared to the 
mean of the same 30-day periods in the years 2015 to 2023, excluding the flood event year. Due to limited 
documentation in Google Earth Engine, it is unclear whether 2023 is included in the mean calculation for the 
2022 anomaly. Like with the absolute soil moisture data, we took the spatial mean of the band data in Google 
Earth Engine for the appropriate area of interest and exported the dataset for analysis. 

3.2.4 Comparison of Susceptibility with Global Flood Database Data 
We first filtered the GFD dataset to only images within or overlapping with the Kentucky state boundaries. 
We converted the individual flood extent maps into a single binary layer, where pixel values of “1” 
represented one or more historical inundation events included in the GFD, and pixel values of “0” 
represented no historical inundation events. We applied a mask to remove pixels with permanent water 
(based on the JRC Global Surface Water dataset, included in the GFD data as the "jrc_perm_water" band), so 
that only flood inundation areas would be included. Then we scaled up and reprojected the binary flood layer 
pixels to match the susceptibility map pixels, since the susceptibility pixels were larger. To accomplish this, we 
used the reduceResolution function in Google Earth Engine with a mean reducer, so that the mean value of 
the input pixels (weighted by area within the output pixel) became the value of the output pixel. We then 
created a binary inundation layer with a 25% threshold, meaning that if the GFD had inundation data for at 
least 25% by area of the smaller input pixels, the larger output pixel was considered “inundated” and assigned 
a value of “1.” If there were gaps in the smaller input pixels due to the surface water mask or missing data in 
the GFD dataset, the 25% threshold only applied to however many input pixels had data and were not 
masked. This means that for some output pixels assigned a value of “1,” less than 25% of the output pixel 
may have been inundated if there were missing pixels in the input data. This threshold was chosen based on 
visual assessment. The reprojection was accomplished using Google Earth Engine’s reproject function, using 
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the flood susceptibility layer’s projection as the target projection. We also used the susceptibility map as a 
mask for the binary inundation layer and vice versa, so that pixels without data in one or both maps would be 
excluded from the analysis (Figure 3). 

 
Figure 3. Kentucky’s historical inundation status based on 33 Global Flood Database (GFD) records from 
2001–2018. A pixel has “flooded” status if at least 25% of input pixels from the GFD (masked to exclude 

permanent water) by area had one or more flood inundations in the GFD. The data have been processed to 
scale up the pixels to match our Flood Susceptibility map and exclude pixels that had no data in the Flood 

Susceptibility Map. 

3.3 Data Analysis 
3.3.1 Susceptibility Map 
To determine the importance of each susceptibility factor, three outside scientists considered subject matter 
experts (SME) on regional flooding performed an AHP individually using a Microsoft Excel-based template 
(Goepel, 2013). These individual weighting schemes were then combined, resulting in the weights shown in 
Appendix B, Table B2. The SMEs’ combined analysis resulted in a 3.6% consistency ratio. The consistency 
ratio is a measure of how logical an evaluator’s judgement of criteria is based on their pairwise rankings; this 
value of 3.6% is deemed acceptable as it is under the 10% threshold considered ideal for published AHPs 
(Saaty, 1991). 

We created a susceptibility measurement using the rounded combined weights from our AHP and the 
Weighted Overlay (Spatial Analyst) tool in ArcGIS Pro, which accepts each factor as a reclassified raster and 
creates an average score based on the weighting scheme. This created a map with pixels ranked 1–5, where a 
“1” describes lower susceptibility and a “5” describes higher susceptibility. Using census tracts and Kentucky 
county lines as boundaries, we aggregated the pixels and found an average for each polygon to create a more 
meaningful resolution for our partners.  

3.3.2 Vulnerability Map 
After reclassification, the vulnerability data were exported into R 4.2.2 to calculate an average vulnerability 
score for each tract and county. This score was calculated by summing the individual reclassified scores and 
dividing this value by the number of columns (1–13) that contained data. This ensured tracts with missing 
data were adequately represented. After analysis, data tables were exported as CSV files, imported into 
ArcGIS Pro, and joined with polygons by tract ID and county names for visualization. 

3.3.3 Risk Map 
Once the susceptibility and vulnerability maps were created at the census tract and county resolution, the 
layers were joined into a single table in ArcGIS Pro and displayed using a bivariate color symbology. This 
visualization displays combined flood risk while still depicting the separate susceptibility and vulnerability 
rankings.  

3.3.4 Soil Moisture 
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After exporting soil moisture and soil moisture anomaly data from Google Earth Engine, we plotted the data 
in charts to quantitatively display the progression of soil moisture behavior. For the surface soil moisture 
data, we added a 24-hour running mean to display a smoothed version of the data in addition to the raw 
three-hourly time series. For the soil moisture anomaly data, we did not compute a running average since the 
anomaly band data already represents a 30-day average centered on the date.   

3.3.5 Comparison of Susceptibility with Global Flood Database Data 
We created a series of binary layers for each susceptibility class from the susceptibility map, which was 
masked to omit any “no data” pixels from the GFD inundation map. Then, the reduceRegion tool on Google 
Earth Engine was used to compare the maps and calculate statistics. We found the number of pixels in the 
union of the target susceptibility class and the GFD binary inundation layer for each susceptibility class. 
Then, we determined the total number of pixels per class in the masked susceptibility map. Outside of 
Google Earth Engine, we divided the number of pixels that have historical inundation data in each class by 
the total number of pixels in that class to determine the percentage of each susceptibility class that had 
historical inundation data represented in the GFD. 

4. Results & Discussion 
4.1 Susceptibility 
Our final susceptibility map assigned each pixel a value from one to five based on the weighted average of the 
seven topographic parameters. No pixels were classified into group 5, the highest classification. The majority 
of Kentucky was classified into group 3, which comprises about 74% of total pixels (Table 1). Group 2 was 
the next largest, with about 22% of pixels, leaving less than 5% of pixels made up of groups 1 and 4 
combined.  

Table 1 
Distribution of Susceptibility Classifications 

Classification Number of Pixels Area of State (km2)  Percent of State 
Coverage 

1 (Lower) 6 7.2 <0.01 

2 15,871 19,045.2 22.1 

3 53,210 63,852 74.2 

4 (Higher) 2,603 3,123.6 3.6 

5 0 0 0 

Total: 71,690 86,028 100 

The final flood susceptibility map (Figure 4; Appendix C1) shows the weighted susceptibility with darker blue 
areas corresponding to higher susceptibility, and green/yellow areas corresponding to lower susceptibility. It 
is important to note that this map does not claim to identify areas with no, or even low, susceptibility to 
flooding. The analysis only compares the susceptibility across the state, so that areas classified as “1” may still 
have high susceptibility to flooding during intense precipitation events, but they are generally less susceptible 
to areas classified as “4.” Generally, susceptibility appears to be higher in western Kentucky, with clusters of 
the highest susceptibility along the Ohio River on the northwestern border. However, areas of high 
susceptibility can also be seen in eastern Kentucky, where major flooding does occur. In this region, areas of 
lower susceptibility correspond to higher elevation, with higher susceptibility appearing in the valleys of the 
mountainous region.  
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Figure 4. Final flood susceptibility map showing the weighted susceptibility score by pixel, approximately 1.2 
km2, for Kentucky. The darker regions correspond to higher susceptibility, while lighter regions correspond 

to lower susceptibility. 

4.2 Vulnerability 
Through an analysis of vulnerability score distribution (Table 2), we found over 95% of Kentucky's 
population and land area falls within a tract in the range of 2 to 3.99. A small number of tracts and their 
associated land area and population have a vulnerability score below 2. Around 2.4% of Kentucky's 
population lives in a tract with a vulnerability score of 4 or greater, with these tracts being more concentrated 
in eastern and southeastern regions. 

Table 2 
Distribution of Vulnerability Classifications 

Classification Number of 
Tracts 

Percent of State 
Coverage 

Number of 
People 

Percent of 
Population 

1–1.99 5 0.1 17,353 0.4 

2–2.99 481 19.8 1,877,462 42.1 

3–3.99 782 77.0 2,460,373 55.1 

4–4.99 38 3.1 106,764 2.4 

Total: 1,306 100 4,461,952 100 

 
Our final vulnerability map (Figure 5; Appendix C2) shows the average vulnerability score by census tract, 
with a range of values from about 1.77 to 4.31 and a mean vulnerability score for all tracts of approximately 
3.13 out of 5. Darker pink areas correspond to higher vulnerability scores while lighter pink areas correspond 
to lower vulnerability scores. Higher vulnerability scores are generally found in eastern Kentucky, but some 
tracts in other regions of the state also have higher scores. 

 
Figure 5. Final flood vulnerability map showing the average vulnerability score by census tract for the state. 

Darker regions are associated with higher vulnerability scores, while lighter regions are associated with lower 
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vulnerability scores. Higher vulnerability scores are generally seen in the eastern part of the state, but high 
vulnerability tracts can be found in other regions as well. 

4.3 Flood Risk  
Our combined flood risk map (Figure 6; Appendix C3) shows the overlap between susceptibility (based on 
physical geography) and vulnerability (based on socioeconomic factors) in Kentucky, largely reflecting the 
trends seen in each map. Areas of higher vulnerability (pink) are generally more frequent in eastern Kentucky, 
while areas of higher susceptibility (blue) are more frequent along the Ohio River in northwestern Kentucky. 
The resolution of our susceptibility map was reduced to combine it with vulnerability, which is recorded at 
the census tract level. Pixels inside each census tract were aggregated to the census tract level, and an average 
susceptibility was assigned to each tract. As a result, spatial resolution is reduced, and at this lower spatial 
resolution, isolated areas of both high and low susceptibility are lost. This is especially true of eastern 
Kentucky, where a higher concentration of lower susceptibility pixels of mountaintops was averaged with the 
sparser high susceptibility pixels of valleys, creating an average susceptibility that is not reflective of the true 
risk posed to communities in valleys. Still, much of the state is moderately susceptible and moderately 
vulnerable. 

 
Figure 6. Combined flood risk map showing 16 levels of risk at the census tract level, highlighting the 

intersection of susceptibility and vulnerability in Kentucky. Pink areas show higher vulnerability but lower 
susceptibility, blue areas show higher susceptibility but lower vulnerability, and purple areas show a high 

combination of both factors. 
 
4.4 Soil Moisture 
For both flood events, the highest SMAP L4 modeled surface soil moisture values occurred on the date of 
peak flooding (Figure 7). However, both regions showed substantial variation in soil moisture in the month 
prior to the floods. 
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Figure 7. The variation in surface soil moisture in selected counties the month before and week after the major 
flood events of 2022 (left) and 2023 (right) are shown. Soil moisture values are derived from SMAP L4 

Surface Soil Moisture band data. “Proportion by volume” refers to the volumetric proportion of moisture 
estimated in the top five centimeters of soil. 

 
For both flood events, there were modeled surface soil moisture anomaly values both above and below zero, 
with values above zero suggesting that soil was more saturated during that time than other years on average, 
and values below zero suggesting that soil was less saturated during that time than other years on average 
(Figure 8). However, for the 2023 event, a large majority (94%) of the soil moisture anomaly values before the 
peak flood date were negative, suggesting that many days were drier than that time in previous years. For the 
2022 event, the balance of positive and negative anomaly values before the peak flood date is more even, 
although the majority (63%) of the values were also negative. For both years, the highest anomaly values can 
be seen on the peak flood dates.  

 

 
Figure 8. Surface soil moisture anomalies in selected counties from the month before and week after the major 
flood events of 2022 (left) and 2023 (right) are shown. The anomaly values are derived from the experimental 
SMAP L4 surface soil moisture anomaly band. They represent the difference of the 30-day average of SMAP 
L4 surface soil moisture band values compared to the mean of the same 30-day periods in the years 2015 to 
2023, excluding the flood event year. Due to limited documentation in Google Earth Engine, it is unclear 
whether 2023 is included in the mean calculation for the 2022 anomaly. The x axis represents the halfway 
point in each 30-day period. “Proportion by volume” refers to the volumetric proportion of moisture 
estimated in the top five centimeters of soil. 
 
4.5 Comparison of Susceptibility with Global Flood Database Data 
Out of the 71,292 pixels with data for both maps, 5.04% had historical inundation events represented in the 

GFD (Table 3). The highest susceptibility class (4) had the highest percentage of historically inundated pixels 
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(13.98%), while the lowest susceptibility class (1) had the lowest percentage of historically inundated pixels 

(0.00%). However, classes 2 and 3 do not display a consistently increasing pattern, with a slightly higher 

percentage of pixels in class 2 having inundation data than class 3.  

 

Table 3 
Comparison between Susceptibility Map and GFD Inundation Map 

Susceptibility 
Class 

Number of inundated 
pixels in class 

Total number of 
pixels in class 

Percent of inundated 
pixels in class 

1 (Lower) 0 6 0.00 

2 867 15,666 5.53 

3 2,364 53,017 4.46 

4 (Higher) 364 2,603 13.98 

All Classes 3,595 71,292 5.04 

 
4.6 Feasibility for Partner Use 
Using seven weighted topographic factors, we created a susceptibility map showing areas of Kentucky that 
are most prone to flooding. This can aid our partners as an efficient decision-making tool to better assist 
communities that have a higher exposure to the effects of flooding. However, to improve the accuracy of our 
AHP, we had the SMEs remove slope, aspect, and elevation from the analysis under the assumption that they 
are properly encapsulated in TWI, which used these three factors as inputs in its equation. We based this on 
literature suggesting that seven is the maximum preferred number of factors for AHPs (Saaty, 1980; Saaty and 
Ozdemir, 2003, cited in Bahurmoz, 2006). This may affect the accuracy of our map as slope and elevation are 
important in determining runoff, which greatly contributes to flooding. Therefore, a future analysis including 
these variables through possibly a different weighting scheme that can include more inputs may be worth 
pursuing.   
 
The results from the comparison of our susceptibility map with the GFD inundation map are promising; 
however, as remotely sensed, algorithmically derived products, the historical inundation data cannot be 
considered “ground truth” data. The creators of the GFD note errors in the classification process and 
exclusion of some flood events due to factors including cloud cover, terrain, and short duration (including 
flash floods) (Tellman et al., 2021). The bias against flash floods may make this database less suitable for 
assessing historical flooding in Eastern Kentucky, since flash floods are particularly common there. While the 
GFD does show historical inundation in southeastern Kentucky, the data is spottier, suggesting that the GFD 
may not be as representative of flooding in this region of Kentucky. Beyond biases due to the data collection 
method, the relatively short time span of the historical inundation data means that it may not accurately 
represent typical flood behavior. Future work could carry out a more detailed validation including data 
collected via alternate methods to account for biases in optical remote sensing.  
 
We also created a flood vulnerability map using both socioeconomic and infrastructure data to help identify 
areas that are most exposed. Though we used important criteria, none of them served as a remoteness 
indicator. This is important, particularly in eastern Kentucky, where many communities are remote, some 
with only one access point through bridges that can be damaged during flooding. Understanding the location 
and quality of access points in and out of communities could help our partners better identify frontline 
communities and aid emergency managers in determining evacuation plans. Still, this map provides our 
partners with valuable information on vulnerability across the state and can be used to locate areas that may 
require extra resources and more preparation in the event of a large storm. 
 
The flood risk map was created by combining the susceptibility and vulnerability maps. This can help 
emergency managers identify areas that are not only most prone to flooding but may experience the most 
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exacerbated impacts from a severe flood. This type of map can be used as an input to hydrologic models for 
flood forecasting.  
 
Finally, while our soil moisture analysis was the most exploratory part of our study, we have created both 
visual and quantitative assessments of soil moisture using SMAP Earth observations. The SMAP Level 3 
brightness observations upon which the SMAP Level 4 model output is based may have regions of poor 
quality in Kentucky based on its quality assurance band. Additionally, SMAP anomalies are based on a 
relatively short time period that cannot be considered authoritative on the region’s true climatology. Still, our 
data can be used by the KCC to assess the agreement between Earth observations and in situ data. To assist 
with this, we have provided the KCC with numerical data of the daily mean soil moisture data at the points of 
the KCC’s Mesonet stations to allow for a direct comparison. Ultimately, although there were limitations to 
all four components of our study, we have created products that are feasible for partner use.  
 
4.7 Future Recommendations 
Our partners could best integrate our products into their decision-making practices by keeping the map layers 
up to date and ensuring that they are easily accessible. By following these two recommendations, the maps 
that we made will stay relevant and can continue to inform emergency management decisions well into the 
future. To assist our partners with keeping the maps up to date, we included a GIS tutorial that outlines the 
steps to create our map layers for the susceptibility and vulnerability maps and combine them to form a 
comprehensive flood risk map. By following this set of instructions, the map products can be remade when 
data are updated on the demographics, infrastructure, and geomorphology of Kentucky. To make our map 
products accessible, we recommend that our partners host the maps online. The KCC has offered to host the 
maps, which would allow agencies and stakeholders to interact with our map and share it in a convenient web 
format. This would also allow for better data interpretation as smaller details can be viewed and layers can be 
toggled as necessary to fit the user’s goals. 

 
5. Conclusions 
In just over 12 months, Kentucky experienced two catastrophic flooding events that devastated communities 
and highlighted the need for continued flood risk assessment. This project demonstrated the viability of using 
aerial and ground-based measurements to complete such an assessment while also coordinating with 
Kentucky-based partners to create products that best supplement their community outreach efforts.  
 
Our flood susceptibility map showed that the propensity to flood is relatively higher in western Kentucky, 
although points of higher susceptibility are scattered throughout the state due to the extensive river system 
and varying terrain. Our flood vulnerability map showed that communities in eastern Kentucky may 
experience heightened impacts from flooding, although there are hotspots of higher vulnerability across the 
state due to fluctuations in socioeconomic factors. Our flood risk map highlighted these trends and reflected 
the fact that much of the state is moderately susceptible and moderately vulnerable to flooding. Our 
exploratory analysis of antecedent soil moisture conditions showed the feasibility of incorporating SMAP data 
into future analyses on the relationship between soil moisture and flood severity in Kentucky. 
 
Additional work could use an alternative weighting scheme or pursue refinements to the AHP used for this 
project. Such refinements could include considering more criteria, especially variables related to precipitation, 
consulting more SMEs, or using a weighting scheme for vulnerability. Moreover, future work could 
incorporate additional data on historical flood occurrence, including in situ data if it can be located, to 
facilitate a validation of flood susceptibility. While these avenues were outside the scope of our project, we 
believe they could provide value to the goal of producing accurate and current flood risk maps for Kentucky 
and other regions.  
 
Together, our maps provide a snapshot of flood susceptibility, vulnerability, and risk in Kentucky and our 
methodology builds on a reproducible method that allows for the creation of updated maps in the future. 
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Presently, our maps can serve as resources that aid the community outreach efforts of our partner 
organizations and enable a greater understanding of flood risk statewide. Our work can also be shared with 
emergency managers to provide another dimension of preparedness to flood warning and response 
operations in Kentucky. 
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7. Glossary 
AHP – Analytic Hierarchy Process, a method using pairwise comparisons to determine the relative 
importance/weights of criteria  
ArcGIS Pro – a professional desktop GIS application from Esri 
CSV – Comma-Separated Values, a text file format using commas to separate values and lines to separate 
records  
DEM – Digital Elevation Model, a three-dimensional representation of elevation data and terrain 
Flood Susceptibility – the propensity of an area to flood based on topographic factors 
Flood Vulnerability – the potential of a community to be severely impacted by a flood disaster 
GIS – Geographic Information System, a system to manage and analyze geographic data related to positions 
on Earth’s surface 
Google Earth Engine – a cloud-based geospatial analysis platform 
Karst – landscape produced by the dissolution of soluble rocks such as limestone and characterized by caves, 
sinkholes, and other features 
Mine Tailings – the leftover material from mining operations, consisting of finely ground rock, water, and 
chemicals 
Slurry Impoundments – a natural or artificial pond used for the storage of mine tailings 
SMAP – Soil Moisture Active/Passive, a NASA satellite that measures soil moisture across the globe  
TWI – Topographic Wetness Index, used to quantify the impact of topography on hydrological processes 
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9. Appendices 
Appendix A  

 
Table A1 
Susceptibility Map Data 

Susceptibility 
Factor 

Dataset Title(s) Data Source Details and Justification for Inclusion 

Distance to 
Rivers  

Full Set of Rivers National Weather 
Service (National 
Weather Service, 
2007) 

Rivers and stream levels rise in periods of 
heavy rainfall. 

Topographic 
Wetness 
Index (TWI) 

Kentucky 
Elevation Data 
(5ft DEM) 

KyFromAbove 
(KyFromAbove, 
2013) 

TWI measures the effects of slope, aspect, and 
elevation on hydrologic processes (see 
Sørensen et al., 2006). 

Land Cover  NLCD 2021 
Land Cover 
(CONUS) 

Multi-Resolution 
Land 
Characteristics 
Consortium 
[MRLC] National 
Land Cover 
Dataset [NLCD] 
(Dewitz, 2021) 

Land Cover shows areas of (for example) 
forest, agriculture, and developed areas. Water 
can drain better through permeable materials 
such as forest soil than through impermeable 
surfaces like asphalt or concrete. Land cover 
type impacts runoff rates. 

Hydrologic 
Group  

Hydrologic 
Group 

Kentucky Natural 
Resources 
Conservation 
Service [NRCS] 
(USDA-NRCS, 
2020) 

Hydrologic Group groups soils based on 
runoff potential when inundated by long 
storms, regardless of vegetation coverage (see 
Soil Science Division Staff, 2017). 

Drainage 
Class 

Drainage Class Kentucky NRCS 
(USDA-NRCS, 
2017) 

Drainage Class is a categorization of soil types 
that considers how quickly water moves 
through the soil (see Soil Science Division 
Staff, 2017). Areas with poorly drained soil 
may be more prone to flooding as the soil can 
absorb less water from rainfall and at a slower 
rate. 

Karst Areas Karst 
Occurrence in 
Kentucky 

Kentucky 
Geological Survey 
(Kentucky 
Geological Survey, 
1988) 

Karst areas are those where bedrock dissolves, 
forming features such as sinkholes and caves 
(National Park Service). Karst springs are 
prone to overflowing during extreme events, 
leading to flooding (de Waele et al., 2011). 

Distance to 
Mines 

Ky Permitted 
Mine Boundaries 

KyGovMaps Open 
Data Portal (Horn, 
2021) 

Mine slurry impoundments may be a flood 
risk. Surface mines strip the land of soil and 
vegetation, leading to more runoff. 
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Table A2  
Vulnerability map demographic data 

Vulnerability Factor Long Title* Data Title** 

Poverty Percentage of people classified as below 

the poverty level. 

pct_Prs_Blw_Pov_Lev_ACS_16_20  

Limited English 

Speaking 

Percentage of households in which 

members 14 and over have difficulty 

with English. 

pct_ENG_VW_ACS_16_20 

Population 65+ Percentage of people over the age of 65 

years.  

pct_Pop_65plus_ACS_16_20 

Population Under 5 Percentage of people under the age of 5 

years. 

pct_Pop_under_5_ACS_16_20 

Disability Percentage of people with a disability.  pct_Pop_Disabled_ACS_16_20 

Mobile Homes Total number of mobile homes. Mobile_Homes_ACS_16_20 

No Internet Access Percentage of households with no 

internet access. 

pct_HHD_No_Internet_ACS_16_20 

No Telephone 

Service 

Percentage of housing units without 

telephone service. 

pct_NO_PH_SRVC_ACS_16_20 

No Computer 

Access 

Percentage of households with no 

computing device of any kind. 

pct_HHD_NoCompDevic_ACS_16_20 

Population Density  Calculated by dividing the Total 

Population variable by the Shape_Area 

variable of the polygon in ArcGIS. 

Tot_Population_ACS_16_20 

*Long Titles for the US Census 2022 Planning Database Tract Data describe the data in words based on 
labels provided by the US Census API (U.S. Census Bureau, n.d.).  
**Data Titles for the US Census 2022 Planning Database Tract Data refer to the column titles in the CSV. 
 
Table A3  
Vulnerability map infrastructure data  

Vulnerability Factor Data Title Data Source 

Bridges Bridge Locations Kentucky Geography Network 
 

Hospitals Ky Hospitals KyGovMaps Open Data Portal   

Fire Stations Fire Stations Homeland Infrastructure Foundation-Level Data (HIFLD)   

 
 
 
Table A4 
County-level vulnerability map demographic data 

Vulnerabilit

y Factor 

Numerator 

Label* 

Numerator Data Title** Denominator Data Title*** 
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Population 

Under 5 

Persons less 

than age 5 in 

the ACS 

Pop_under_5_ACS_16_20 Tot_Population_ACS_16_20 

Population 

65+ 

Persons aged 

65 and over 

in the ACS 

Pop_65plus_ACS_16_20 Tot_Population_ACS_16_20 

Poverty Number of 

people 

classified as 

below the 

poverty level 

in the ACS 

Prs_Blw_Pov_Lev_ACS_16_20 Pov_Univ_ACS_16_20 

 

Disability Total 

population 

with a 

disability in 

the ACS 

Pop_Disabled_ACS_16_20 Civ_Noninst_Pop_ACS_16_20 

Mobile 

Homes 

Mobile 

Homes in 

the ACS 

Mobile_Homes_ACS_16_20 Tot_Housing_Units_ACS_16_2

0 

No 

Computer 

Access 

Households 

that do not 

have a 

computing 

device of any 

kind in the 

ACS 

HHD_NoCompDevic_ACS_16_20 Tot_Occp_Units_ACS_16_20 

No Internet 

Access 

Households 

that have no 

Internet 

access in the 

ACS 

HHD_No_Internet_ACS_16_20 Tot_Occp_Units_ACS_16_20 

Limited 

English 

Speaking 

Limited 

English-

speaking 

household 

(Use Tot 

ACS Occ 

HU as 

denominator

) in the ACS 

ENG_VW_ACS_16_20 Tot_Occp_Units_ACS_16_20 

No 

Telephone 

Service 

Number of 

housing units 

without 

telephone 

Occp_U_NO_PH_SRVC_ACS_16_2

0 

Tot_Occp_Units_ACS_16_20 
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service in the 

ACS 

Population 

Density  

Total 

Population 

in the ACS 

Tot_Population_ACS_16_20 Shape_Area  

*Labels for the US Census 2022 Planning Database Tract Data are taken directly from the US Census API 

labels for the numerator data (U.S. Census Bureau, n.d.).  

**Numerator Data Titles refer to the column titles in the US Census 2022 Planning Database Tract Data. 

***Denominators were used to divide the absolute numbers to obtain a percentage according to the method 
the census uses to calculate the tract-level percentage versions of these variables included in the Planning 
Database dataset. Denominator Data Titles refer to the column titles in the US Census 2022 Planning 
Database Tract Data CSV, except for the Shape_Area variable used to calculate population density, which 
was an attribute of the county polygons in ArcGIS Pro.  

 
 
 

Appendix B 
 
Table B1  
Susceptibility Reclassification Systems 

Parameter Reclassification 

Distance to 
rivers (m) 
 
 
(Vojtek & 
Vojteková, 2019, 
p. 8) 

1 11411.355469 - 14264.194336 

2 8558.516602 - 11411.355469 

3 5705.677734 - 8558.516602 

4 2852.838867 - 5705.677734 

5 0 - 2852.838867 
 

TWI 
 
 
 
 
 
(Ballerine, 2017, 
p. 3) 

1 ≤1.8 

2 ≤2.6 

3 ≤3.4 

4 ≤4.2 

5 ≤5.0 
 

Land cover 
 
 
 
 
 
(Nix et al., 2021) 

1 Deciduous Forest, Mixed Forest, Evergreen Forest, Woody Wetlands 

2 Grassland/Herbaceous, Shrub/Scrub, Emergent Herbaceous Wetlands 

3 Pasture/Hay, Cultivated Crops 

4 Barren Land 

5 Developed Open Space, Developed Low Intensity, Developed Medium 
Intensity, Developed High Intensity 

 

Soil drainage 
class 
 
 
 
(USDA-NRCS, 
2017) 

1 Excessively drained, Somewhat excessively drained 

2 Well drained 

3 Moderately well drained 

4 Somewhat poorly drained 

5 Very poorly drained, Poorly drained 
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Hydrologic 
group 
 
 
 
 
 
 
 
 
 
 
 
 
(USGS, n.d.) 

1 Group A - “Group A soils consist of deep, well drained sands or gravelly sands 
with high infiltration and low runoff rates” 

2 Group B - “Group B soils consist of deep well drained soils with a moderately 
fine to moderately coarse texture and a moderate rate of infiltration and runoff” 

3 Group C - “Group C consists of soils with a layer that impedes the downward 
movement of water or fine textured soils and a slow rate of infiltration” 

4 A/D, B/D, C/D - “If a soil is assigned to a dual hydrologic group (A/D, 
B/D, or C/D), the first letter is for drained areas and the second is for 
undrained areas. Only the soils that in their natural condition are in group D are 
assigned to dual classes.” 

5 Group D - “Group D consists of soils with a very slow infiltration rate and 
high runoff potential. This group is composed of clays that have a high shrink-
swell potential, soils with a high-water table, soils that have a clay” 

 

Karst areas 
 
 
 
 
(de Waele et al., 
2011) 

1 Non-karst  

2 - 

3 Prone to karst 

4 - 

5 Intense karst 
 

Distance to 
mines (m) 
 
 
(Maaß & 
Schüttrumpf, 
2018) 

1 75,893.721936 - 171,264.59375 

2 40,969.177328 - 75,893.721936 

3 12,089.265441 - 40,969.177328 

4 671.625858 - 12,089.265441 

5 0 - 671.625858 
 

 
Table B2 
Analytic Hierarchy Process  

Parameter 
Subject Matter Expert Combined 

Weight*  SME 1 SME 2 SME 3 

Distance to Rivers 27.0 27.1 30.1 29.9 

Topographic 
Wetness Index 
(TWI) 

30.2 16.2 30.1 25.3 

Land Cover 9.5 16.0 17.7 14.0 

Soil Drainage 
Class 

9.0 17.6 9.7 11.5 

Hydrologic 
Groups 

11.8 13.7 7.3 10.7 

Karst Areas 8.8 4.8 3.4 5.4 

Distance to Mines 3.8 4.6 1.8 3.3 

*Combined weights were rounded to the nearest whole number during analysis due to limitations of the 
Weighted Overlay (Spatial Analyst) tool in ArcGIS, which does not accept decimals for weights. 
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Appendix C 
Figure C1. Full-page combined flood susceptibility map at the pixel level. 
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Figure C2. Full-page combined flood vulnerability map at the census tract level. 
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Figure C3. Full-page combined flood risk map at the census tract level. 

 


