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1. Abstract 
Alaska’s wetlands cover approximately one third of the state and provide a multitude of ecosystem services, 
including nutrient retention, water purification, and provision of habitat for fish, wildlife, and vegetation. The 
temporal variation in wetland inundation affects these ecosystem functions, and for effective wetland policy 
and management, it is important to track patterns and changes in inundation. In collaboration with the US 
Fish and Wildlife Service (USFWS) and Alaska Satellite Facility (ASF) the fall 2018 NASA DEVELOP Alaska 
Ecological Forecasting team produced an inundation tool to detect and classify inundation extent in Alaska’s 
wetlands from C-band synthetic aperture radar (SAR) data. The team used Earth observation products, 
including Sentinel-1 C-SAR, Landsat 8 Operational Land Imager (OLI), PlanetScope, and RapidEye satellite 
imagery, to create the tool’s thresholding algorithm and generate land cover classifications for validation. The 
inundation tool effectively mapped wetland inundation due to SAR imagery’s sensitivity to water and reliable 
data collection on cloudy days. The optical datasets, Landsat 8 OLI and high resolution Planet imagery, were 
limited by cloud cover and detection of inundation below vegetation and canopy cover but were helpful for 
visual validations of Sentinel-1 C-SAR classifications.  The tool’s ability to map wetland inundation can 
support the development and refinement of National Wetland Inventory (NWI) wetland maps in Alaska and 
build the capacity of operational federal programs to use SAR.  
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2. Introduction 
2.1 Background Information 
Wetlands cover approximately 43%, or 174 million acres, of Alaska’s surface area and provide many 
important ecosystem functions, such as habitat for birds and fish, insulation from permafrost, water filtration, 
and flood regulation (Hall, Frayer, & Wilen, 1994). Alaska has numerous types of wetlands, including tundra, 
marshes, bogs, and permafrost areas. The United States Fish and Wildlife Service (USFWS) established the 
National Wetlands Inventory (NWI) to monitor the extent, characteristics, and change in the nation’s 
wetlands. The NWI works to create a comprehensive inventory of wetland maps and information to inform 
the public and resource managers as they engage in wetland protection, emergency planning, and habitat 
conservation projects (United States Fish and Wildlife Service [USFWS], 2018).  
 
The NWI has traditionally employed technicians to manually delineate wetland extent using fine resolution 
optical imagery and validation from ​in situ​ data collection (Wilen & Bates, 1995). However, this procedure is 
time and resource intensive, especially with Alaska’s remote landscape, and NWI products are only available 
for approximately one third of Alaska. This mapping process lacks the capability to capture many conditions 
below forest canopies (Tiner, 1990) and also limits the capture of temporal and seasonal variations in 
inundation (hydroperiod) (Brooks, 2000), which determine wetland extent and function (Lang, Kasischke, 
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Prince, & Pittman, 2008). Additionally, periodic cloud cover over Alaska wetlands and seasonal variations in 
photoperiod, the period of time each day where the Earth is illuminated, can make the use of optical imagery 
for wetland classification unreliable. 
 
Previous work has demonstrated the potential for C-band synthetic aperture radar (C-SAR) backscatter data 
to map wetland inundation extent (Lang et al., 2008; Townsend, 2002). Sentinel-1 C-SAR uses active remote 
sensing and transmits and receives its own pulses of electromagnetic radiation, allowing for data acquisition 
independent of daylight or natural surface illumination. Additionally, SAR emits longer wavelengths in the 
electromagnetic spectrum that can penetrate clouds, which allows for more frequent data collection 
unconfined by atmospheric conditions (Kasischke, Melack, & Dobson, 1997). SAR technology can also 
partially penetrate vegetation canopies and resulting in double bounce interactions between water surfaces 
and vertical plant structures, significantly increasing SAR backscatter intensity in areas of inundated 
vegetation (​Tsyganskaya​, Martinis, Marzahn, & Ludwig, 2018​)​. These qualities make SAR a robust source of 
data for the close monitoring of wetland hydroperiods, and this project aims to generate inundation land 
cover classifications from Sentinel-1 C-SAR imagery. Land cover classifications of Landsat 8 OLI and higher 
resolution optical data can be used to cross validate SAR classifications.  
 
This project aims to assist the NWI with their mapping capabilities in Alaska through a collaboration with the 
Alaska Satellite Facility (ASF) to produce an inundation mapping product for C-SAR data. This product will 
be calibrated and validated against Landsat 8 Operational Land Imager (OLI) and Planet Labs optical 
imagery. Our chosen study sites (Figure 1) encompass a variety of wetland types with different characteristics 
depending on their flooding regimes and vegetation community (eg., emergent, persistent, forested, shrub) 
(Table A1). This allows for the evaluation of C-SAR efficacy in determining inundation in the presence of 
vegetation as well as the creation of a more robust product. We used C-SAR and optical imagery from June 
2017 to September 2017 to capture inundation extent during non-frozen conditions. 
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Figure 1.​ Wetland sites in Alaska used to calibrate and validate inundation algorithm with Sentinel-1 C-SAR, 
Landsat 8 OLI, and Planet Labs data. 
 

 
2.2 Project Partners & Objectives 
The end user of our product is the USFWS NWI. The NWI has created the Wetlands Mapper, a web based 
platform that provides detailed digital maps of United States’ wetlands for use by resource managers and the 
public. However, the Wetlands Mapper currently only includes abouts a third of Alaskan wetlands, and the 
NWI hopes to complete mapping wetland areas in Alaska. The NWI also has a strong interest in enhancing 
the production of their wetland map products. As of now, their maps are manually created through a 
combination of visual interpretation of optical imagery and ​in situ​ validation conducted by field technicians. 
This process is resource intensive, and the addition of an algorithm for C-SAR inundation classification 
would enhance their mapping capacity. The NWI will evaluate the inundation algorithm made from C-SAR 
imagery to assess if they will be beneficial for generating new mapping products and for refining their current 
wetland maps. Our project will build capacity for the NWI to utilize radar data for wetland mapping and also 
build on their capacity to automate their mapping process with reliable results. 

 
We collaborated with the ASF, who are the current developers of the Hybrid Pluggable Processing Pipeline 
(HyP3). HyP3 is a cloud-based C-SAR data archive and processing platform. It provides on-demand 
processed SAR imagery that has been co-registered and radiometrically corrected. We used this platform to 
generate wetland inundation maps for the NWI. This platform can facilitate efforts to automate wetland map 
generation not only in Alaska, but for other wetland areas around the world due to its ‘on-demand’ nature and 
global coverage of SAR data. ASF will also benefit from our collaboration as our tool will test the capabilities 
of their platform when incorporating and executing new algorithms. This will provide valuable feedback for 
current and future developments of the HyP3 platform. 

 
The project objectives are to implement an algorithm capable of detecting inundation extent in Alaska 
wetlands from C-SAR data, integrate this tool with ASF’s HyP3, and validate inundation products from 
C-SAR data using optical data. Successful implementation will result in a tool to automatically generate and 
supply inundation maps to the NWI, which can be used to delineate wetland extent. This will augment the 
mapping capabilities of the National Wetlands Inventory and add capabilities to ASF’s SAR processing.  

3. Methodology 
3.1 Data Acquisition  
We requested 2017 Sentinel-1 C-SAR data with coverage of our study areas from ASF’s HyP3 tool data 
download portal, which provides radiometrically corrected imagery (Hogenson et al., 2016). We downloaded 
both vertically transmitted vertically received (VV) and vertically transmitted horizontally received (VH) 
polarized imagery. VV linear polarized waves were of particular interest to our work as they capture the 
‘double bounce’ effect that commonly occurs in inundated vegetation with radar imagery. This effect is a very 
unambiguous sign of inundated vegetation and helps identify these areas. The available Sentinel-1 scenes in 
the data portal were first visually analyzed in ASF’s Vertex interface to identify the Sentinel-1 paths and 
frames capturing our study areas in the ‘near range’ of the sensor. This allows us to utilize imagery with 
smaller incidence angles which is optimal because it allows for stronger backscatter returns.  
 
We used the USGS Earth Explorer tool to download cloud-free Landsat 8 Operational Land Imager (OLI) 
Level 2 Surface Reflectance images that corresponded with our Sentinel-1 C-SAR data coverage and 
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acquisition dates. High-resolution optical imagery included 5 meter resolution RapidEye imagery, and 3 meter 
resolution PlanetScope imagery. Imagery from these sensors both belong to Planet Labs. The imagery was 
downloaded from Planet’s website using their browsing capability to locate cloud-free images corresponding 
with Landsat and C-SAR acquisition dates (Table 2).  
 
 
 
Table 2 
Compilation of dataset information and acquisition 

Dataset Parameters Metadata Data 
Acquisition 

Sentinel-1 
C-SAR 

Backscatter values, surface 
roughness 

Level 1 IW, VV + VH,  
5 x 20 m, 12 day composite, 
June 2017 to September 2017 

ASF 
Vertex/HyP3 

Landsat 8 OLI Surface reflectance Level 2, 30 m, 8 day composite, 
June 2017 to September 2017 

Earth Explorer 

PlanetScope and 
RapidEye 

Surface reflectance Level 3B, 3 - 5 m, June 2017 to 
September 2017 

Planet Lab 

 
3.2 Data Processing 
A number of steps were required to geometrically and radiometrically correct the SAR imagery before 
analysis. We first verified that the spatial coordinates of the SAR images were encoded in the Universal 
Transverse Mercator (UTM) projected coordinate system. If they were not, we projected them using a shell 
script from the Geospatial Data Abstraction Library (GDAL). Next, we converted the SAR images from their 
native GeoTIFF format into ENVI raster files using another GDAL function. We extracted metadata from 
the ENVI headers produced during the conversion in order to co-register the images. Once the images had 
been co-registered, we converted the pixel values into decibels (Equation 1).  
 

(1) brightness (dB) = 10*log​10​(pixel % value)  
 
Having projected and converted the SAR data, we employed two different methods to check if the data were 
properly calibrated (Chapman et al. 2015). The first method consisted of calculating and plotting VV/ VH 
band ratios for each scene and visually inspecting for brightness anomalies.  For the second method, we 
calculated the average brightness value for a given scene and plotted it over time (Figure 3). 
 
The optical datasets were manually filtered to imagery with low cloud cover and close correspondence with 
Sentinel-1 acquisition dates. Landsat 8 OLI images Level 2 Surface Reflectance products have already been 
calibrated and atmospherically corrected, and the downloaded Planet Labs imagery had already been 
orthorectified and calibrated for analysis, as well. 
 
3.3 Data Analysis 
3.3.1 SAR Classification 
The following C-band SAR classification methodology is adapted from a study that used L-band SAR to 
detect inundation (Chapman et al. 2015). To classify the SAR imagery into open water, inundated vegetation, 
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and not inundated areas, we performed this procedure on Sentinel-1 C-SAR VV, VH, and VV/VH ratio 
intensity images. First, we calculated the multi-temporal averages (​I​a​)  from June to September 2017 by 
averaging data from each SAR acquisition (Figure 2).  Compared to individual SAR images, the 
multi-temporal averages (​I​a​) have reduced speckle and instead the varying backscatter values highlight 
environmental changes.  
 
To classify ​I​a​ ​into open water, inundated vegetation, and not inundated, we applied a set of VV, VH, and 
VV/VH brightness thresholds (Table 4). We determined the brightness thresholds for VV, VH, and VV/VH 
by manual inspection of backscatter brightness values in the different polarizations and visual comparison 
with the Planet Labs higher resolution RapidEye and PlanetScope.  
 
These multi-temporal classifications represented the average extent of inundation over the summer of 2017, 
but did not capture finer temporal variations. In order to quantify the range of inundation states, we 
compared the backscatter values at individual timesteps to the average inundation state. To account for the 
speckle noise in individual SAR images, we took a 3x3 pixel moving window average of the scenes and 
calculated the ratio of these multi-looked images to ​I​a​ ​The range in inundation states also allowed us to 
determine minimum and maximum inundation area. 
 
3.3.2 Optical Imagery 
Landsat 8 OLI images were classified using a workflow based on the Dynamic Surface Water Extent (DSWE) 
algorithm developed by John W. Jones and Michael J. Starbuck of the US Geological Survey (USGS) (Jones, 
2015). This algorithm extracts five land cover classes from Landsat surface reflectance products by 
determining surface water inundation for each Landsat pixel (Table 3). We wrote a script for Google Earth 
Engine that obtained specific Landsat 8 OLI scenes and output an initial DSWE classification. The script 
then masks out areas with snow, cloud shadows, clouds, and steep regions that are unlikely to retain surface 
water to output the filtered DSWE classification.  
 
Planet Labs’ imagery was analysed by applying a Normalized Difference Water Index (NDWI) (Equation 2) 
to our image layer composites. The main purpose of this index is to highlight and delineate areas of open 
water. The index also assists in the identification of inundated vegetation and areas of shallow water or high 
moisture. The Index imagery consists in pixel values ranging from -1 to 1, with negative values indicating dry 
non-inundated areas, and positive values indicating moist or inundated areas. Another helpful index when 
identifying partially inundated areas, such as inundated vegetation, was the Normalized Difference Vegetation 
Index (NDVI) (Equation 3). This index measures vegetation greenness. Areas in the imagery with high values 
corresponded to closely to densely vegetated areas. Regions in the imagery with coincidently high NDWI 
values and high NDVI values most often were clear indicators of inundated vegetation. With all of these 
indexes as well as the original multispectral optical data we performed unsupervised land cover classifications 
using ENVI which were able to then reliably classify areas of open water, inundated vegetation, and 
non-inundated areas. 
 

(2) Green+NIR
Green−NIR  

 
 

(3) NIR−Red
NIR + Red  
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3.3.3 Accuracy Assessments 
In the absence of available ground truth data, we instead compared single-date SAR classifications with 
Landsat 8 DSWE outputs. First, we reclassified both the SAR and Landsat DSWE into binary classifications 
of inundated and not inundated to facilitate comparison. For the binary reclassification, areas identified in the 
SAR classifications as inundated vegetation and open water were combined into one inundated class. DSWE 
was reclassified based on Table 3. To compare the two classifications, SAR and DSWE were both resampled 
to a resolution of 90 meters. With DSWE and SAR at the same spatial resolution, we calculated a confusion 
matrix, setting DSWE as the ground truth image.  
 
Table 3 
DSWE classes and corresponding reclassified categories 
DSWE Category  Reclassified Category (Binary) 

Not water  Not inundated 

High confidence water  Inundated 

Moderate confidence water  Inundated 

Potential wetland  Inundated 

Low confidence water or wetland  Not inundated 
 

4. Results & Discussion 
The classification of SAR’s multi-temporal averages showed each site’s typical inundation extent, and the VV, 
VH, and VV/ VH polarization images helped distinguish between land cover classes. For the Bear Lake site, 
open water and inundated vegetation appear darker in the VH image. In the VV image, inundated vegetation 
is brighter with higher backscatter values, and the smoother open water surfaces are darker with lower 
backscatter (Figure 2). The differences in backscatter values between inundated vegetation in the VV and VH 
polarizations are highlighted in the VV/VH ratio, as the inundated vegetation areas appear even brighter in 
the ratio image (Figure 2). We used these differences in brightness in conjunction with visual comparison of 
Landsat 8 and Planet Labs imagery to set threshold ranges (Table 4). These threshold values are specific to 
Bear Lake. For the additional study sites, although inundated vegetation generally appeared darker in VH and 
brighter VV, the different polarization images must be still manually inspected for specific threshold ranges.  
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Figure 2​. VV, VH, and VV/VH polarizations averages from June 12 2017 - September 28, 2017 on Bear Lake, 
Alaska. Right multi-temporal average classified from left’s VV, VH, and VV/VH brightness thresholds. 
Table 4 
Brightness threshold values for Bear Lake. 

BEAR LAKE  Open Water  Inundated  Not Inundated 

VV Low  0  0.1  0.15 

VV High  0.2  0.63  0.4 
       

VH Low  0  0  0.15 

VH High  0.063  0.33  0.3 

       

VV/VH Low  0  3  0 

VV/VH High  10  50  10 

 
Minimum and maximum extent show the fluctuations in inundation at Bear Lake during the summer of 2017 
(Figure 3). Minimum inundation shows only the areas that were inundated for all individual SAR acquisitions, 
and maximum inundation shows all pixels at Bear Lake that were inundated at any time during the acquisition 
period.  
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Figure 3​. Minimum and maximum inundation extent derived from C-SAR data between June 12 2017 - 
September 28, 2017 on Bear Lake, Alaska. 
 
Single-date classifications capture smaller temporal changes in inundation and can be used to compare against 
Landsat DSWE (Figure 4). Comparing the two dataset classifications on similar dates eliminates temporal 
inundation fluctuations as a source discrepancy in the classifications. Looking at Figure 4, slight differences in 
the classifications are apparent. Compared to SAR, Landsat DSWE generally included less areas as inundated 
vegetation but classified more areas as open water (Figure 4).  

 
Figure 4.  ​Comparison of the output from the algorithm on C-SAR data and the output of DSWE on Landsat 
8 OLI imagery of Bear Lake, Alaska for July 6th, 2017. 
 
To perform an accuracy assessment between the Landsat DSWE and SAR, a confusion matrix was generated 
using the converted binary classifications (Figure 5). This assessment of the binary classifications prioritizes 
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the distinction between inundated and non-inundated, as opposed to also examining differences in open 
water and inundated vegetation.  

Figure 5​. Sentinel-1 C-SAR binary classification July 6, 2017 and Landsat 8 DSWE binary classification July 6, 
2017 for Bear Lake, Alaska. 
 
4.1 Analysis of Results 
 
4.1.1 Bear Lake: Main Algorithm Testing Site 
When compared to a Landsat DSWE classification for the same date, our C-SAR algorithm output achieved 
an overall agreement of 94.54% (Table 5). There was a higher agreement between the non-inundated class 
(95.9%) than between the inundated class (82.8%). The C-SAR classification identified more pixels than the 
Landsat DSWE as inundated, resulting in a commission error of 31.4%. These pixels tended to be located 
along the edges of the main region of inundated vegetation in the center of the image. Conversely, inundated 
pixels that were omitted by our algorithm tended to be located around the edges of the river in the 
northwestern corner of our image and around the perimeter of smaller bodies of open water throughout the 
scene. The omission of rivers may due to the multi-look pixel window applied to single-date SAR images to 
help smooth and reduce speckling. This discrepancy resulted in an omission error of 17.9%. 
 
Table 5 
Confusion matrix comparing C-SAR and Landsat 8 DSWE for Bear Lake, Alaska on July 6, 2017. 

Overall agreement: 94.54% 

Landsat 8 DSWE 

Non Inundated  Inundated 

C-SAR 
Non Inundated  95.9%  17.9% 

Inundated  4.1%  82.2% 

 
  Commission  Omission 
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C-SAR 
Non Inundated  2.0%  4.1% 

Inundated  31.4%  17.9% 

 
 
4.1.2. Remaining Study Sites 
The four other study sites were also classified with our C-SAR algorithm (Figure 6). We determined separate 
brightness threshold ranges for each site, and the output classifications showed varying degrees of success. 
We expect that the difference in environmental conditions and hydroperiod at these sites, compared to our 
main site Bear Lake, resulted in errors when classifying.  
 
Specifically, our C-SAR algorithm saw difficulties mapping open water and rivers on two of our study sites, 
Canvasback Lake and Crea Creek. Canvasback Lake saw one of our lowest agreements between inundated 
areas with only 40 percent of these areas coinciding (Table A1). Another of our study sites, Goldstream 
Valley, in turn saw a very small regions of its area classified as having any degree of inundation. This may be 
due in part to the site’s homogeneous landscape, existing tree canopy covering underlying inundation, or 
water bodies being too small or slim to be effectively detected and mapped. In Selawik, another one of our 
study sites, we observed a lot of transition spaces between open water and non-inundated areas. These areas 
of high variability can often prove challenging to validate between C-SAR and optical data when observation 
dates are non-coinciding. Although we attempted to find dates that were as close together as possible, that 
was not always possible with the differing temporal resolutions of both earth observations and cloud cover 
limiting available optical data. Even in relatively short gaps of data coverage, inundation extent can fluctuate 
significantly, as highlighted in the difference between outputs of minimum and maximum inundation extent.   

 

10 
 
 



 
Figure 6​. Typical inundation states for Canvasback Lake, Crea Creek, Goldstream Valley, and Selawik derived 
from C-SAR algorithm for the summer of 2017. 
 
The multi-temporal average classifications or the typical inundation outputs generally matched Landsat 
DSWE outputs more closely than single-date classifications (Figure 6, Figure A2). This may be due to 
uncorrected calibration errors and high variations in brightness throughout different dates in the summer of 
2017 across these other four sites. Providing more comprehensive and flexible thresholds for our algorithm 
when performing classifications will allow us overcome some of the limited results from these sites. This will 
require further calibration, validation and testing. Future availability of in situ data might also allow us to have 
greater confidence in our outputs even when these might not intuitively appear to be precise. 
 
4.2 Future Work 
A second term is proposed for this project with the main goals of further calibration and validation of the 
algorithm. The team will hopefully incorporate additional datasets such as UAVSAR and ground truth data to 
improve algorithm thresholds. Since the current state of our algorithm requires manual adjustment by the 
user, an additional goal is to automate the threshold selection process. While this manual threshold input 
provides some flexibility for the user, it can be time intensive and does not align with our long term goal of 
automating the mapping process. Future work could use vegetation cover data to inform differences in 
threshold values between sites. Unsupervised classification techniques such as image segmentation may be 
possible methods to automate this algorithm.  
 
Future work could also include the classification refinement. Using the difference between individual time 
steps and the multi-temporal average, refined classifications can reveal areas that are inundated year-round, 
seasonally, or not inundated. Once this is fine-tuned, it may be possible to model and forecast inundation and 
wetland extent. ​Additionally, we currently only check for calibration errors and do not apply corrections. In 
the future, when calibration issues are detected, images could be normalized by the multi-temporal averaged 
brightness value (Chapman et al. 2015). 
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5. Conclusions 
Our results suggest that C-SAR is a useful source of data for identifying inundation. The C-SAR image 
collection was unhindered by cloud and snow, unlike the data acquisition process for Landsat 8 OLI and 
Planet Labs optical imagery.  Despite this disadvantage, optical data proved to be a useful stand-in for in-situ 
data when calibrating and validating our C-SAR algorithm thresholds. We identified several issues regarding 
the accuracy of our classifications and other considerations when utilizing C-SAR data. As shown by our 
accuracy assessments, there was great variation in correspondence between our C-SAR products and DSWE 
products. This could be attributed to varying water regimes and vegetation type and density at each site. 
Another factor that may have influenced our product was the improper co-registration of our images. This 
could have caused small regions of inundation to be lost in the multi-temporal average, leading to omission 
errors.  
 
Further work needs to be conducted to adjust our algorithm to better resemble classification products 
generated from optical data. Upon further refinement, this algorithm could enhance the wetland mapping 
capacity of our partners at the National Wetland Inventory. Additionally, once the robustness of the C-SAR 
data and thresholds are established, the data can be more confidently used to map areas of inundation that 
traditional mapping methods and optical imagery are unable to detect, such as below dense canopy cover. 
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7. Glossary 
ASF ​​- Alaska Satellite Facility. Part of the Geophysical Institute of the University of Alaska Fairbanks. 
ASF Vertex​​ - Data acquisition portal of the Alaska Satellite Facility for remotely sensed data of the Earth. 
Co-registration​​ - Process of accurately aligning the same geographical locations on different data sets. 
Essential when performing analysis or change detection processes. 
Earth Explorer​​ - USGS satellite, aerial imagery, and remote sensing data catalog.  
Earth observations​​ - Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time. 
ENVI​​ - Image analysis software and file format which incorporates an image file and a header ASCII file 
containing the image’s metadata and other metrics.  
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GDAL ​​-​ ​​Geospatial Data Abstraction Library.  Shell and Python script library for processing vector and 
raster geospatial data. 
GeoTIFF​​ - File format which integrates georeferenced geographical data with TIFF imagery. 
Hydroperiod​​ - Seasonal pattern of water levels. Wetlands may display tidal, permanent, intermittent, 
seasonal, or even just temporary flooding 
HyP3​​ - Hybrid Pluggable Processing Pipeline. Tool for providing on demand processed Sentinel radar data.  
NWI​​ - National Wetlands Inventory. Established by the US Fish and Wildlife Service. 
SAR​​ - Synthetic Aperture Radar. Radar system which utilizes the flight path of the space or airborne platform 
to simulate very large antenna. Capable of generating high-resolution radar imagery. 
USFW​​ - United States Fish and Wildlife Service 
VV​​ - vertical transmit, vertical receive. Radar system wave polarization consisting of vertical linear 
transmission and vertical linear reception 
VH​​ - vertical transmit, horizontal receive. Radar system wave polarization consisting of vertical linear 
transmission and horizontal linear reception 
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9. Appendix 
Table A1 
Location, and NWI wetland classification type of  study sites​ (National Wetlands Mapper).  

Site  Location  Wetland Type 

Crea Creek  70.2, -152.5  Lakes/Ponds 
Freshwater Emergent Wetland 

Yukon Flats 
(Canvasback Lake) 

66.389, 
-146.363 

Lake with Freshwater Forested/Shrub and Emergent Wetland 

Bear Lake  64.734, 
-149.737 

Freshwater Emergent Wetland 

Selawik  66.525, 
-159.097 

Active Mapping 

Goldstream  64.8944, 
-147.8719 

Freshwater Forested/Shrub Emergent Wetland 

Area 1002  70.0474, 
-143.2261 

Active Mapping 
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Figure A1: 
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Figure A2​. Comparisons of C-SAR algorithm classification and Landsat 8 DSWE classification for (1) 
Canvasback Lake, (2) Crea Creek, (3) Goldstream Valley and (4) Selawik. Black regions are non-inundated 
and white regions are inundated. 
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Table A2 
Confusion matrix comparing C-SAR and Landsat 8 DSWE for Canvasback Lake, Alaska. 

Overall agreement: 94.54% 

Landsat 8 DSWE - 6/4/17 

Non Inundated  Inundated 

C-SAR 
6/12/17 

Non Inundated  96.77%  59.77% 

Inundated  3.23%  40.23% 

 
  Commission  Omission 

C-SAR 
6/12/17 

Non Inundated  2.0%  4.1% 

Inundated  31.4%  17.9% 

Table A3 
Confusion matrix comparing C-SAR and Landsat 8 DSWE for Crea Creek, Alaska. 

Overall agreement: 94.54% 

Landsat 8 DSWE - 7/9/17 

Non Inundated  Inundated 

C-SAR 
7/4/17 

Non Inundated  92.4%  31.4% 

Inundated  7.66%  68.6% 

 
  Commission  Omission 

C-SAR 
7/4/17 

Non Inundated  5.3%  7.6% 

Inundated  40.6%  31.4% 

Table A4 
Confusion matrix comparing C-SAR and Landsat 8 DSWE for Goldstream Valley, Alaska. 

Overall agreement: 99.78% 

Landsat 8 DSWE - 6/13/17 

Non Inundated  Inundated 

C-SAR 
6/12/17 

Non Inundated  99.7%  77.4% 

Inundated  0.04%  22.6% 

 
  Commission  Omission 

C-SAR 
6/12/17 

Non Inundated  0.2%  0.04% 

Inundated  41.7%  77.42% 

Table A5 
Confusion matrix comparing C-SAR and Landsat 8 DSWE for Selawik, Alaska. 
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Overall agreement: 94.54% 

Landsat 8 DSWE - 7/21/17 

Non Inundated  Inundated 

C-SAR 
7/16/17 

Non Inundated  93.2%  24.9% 

Inundated  6.7%  75.1% 

 
  Commission  Omission 

C-SAR 
7/16/17 

Non Inundated  24.7%  6.7% 

Inundated  6.8%  24.9% 
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