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1. Abstract 
Designated as an impaired body of water by both state and federal water quality standards, Hilo Bay, Hawaiʻi 
is highly susceptible to brown water, a condition where the water becomes murky and is associated with 
excess levels of bacteria, contaminants, and nutrients. A breakwater in Hilo Bay, which was established to 
protect Hilo town from tsunamis, interferes with water circulation and prolongs the presence of brown water 

in the bay. The State of Hawaiʻi issues brown water advisories (BWAs) following flash flood warnings, 
sewage spills, and other events to indicate a public health concern for those who use Hilo Bay for recreation, 
cultural purposes, and fishing. Due to the elevated public health risk and ecosystem disturbance that brown 

water poses to Hilo Bay, we partnered with the Hawaiʻi County Office of Sustainability, Climate, Equity, and 
Resilience (OSCER) to examine the feasibility of using Earth observations (EO) to monitor water quality in 
the Hilo Bay region. We leveraged data from Sentinel-2 Multispectral Instrument (MSI), Landsat 8 
Operational Land Imager (OLI), Landsat 9 OLI-2, and Aqua and Terra Moderate Resolution Imagine 
Spectroradiometer (MODIS) instruments to identify and assess spatial and temporal patterns of two main 
water quality parameters, turbidity and chlorophyll-a, during BWAs. We used the Optical Reef and Coastal 
Area Assessment (ORCAA) tool in Google Earth Engine to process EO data and generate water quality 
maps and time series. Our study found that increased turbidity levels can be identified by EO data during 
BWAs. In addition, our map products indicated the presence of several turbidity plumes along the coast, with 
the highest concentration of turbidity found within Hilo Bay. While chlorophyll-a levels were relatively flat 
within our study region during BWAs, we found that regional chlorophyll-a patterns could be derived from 
MODIS chlorophyll-a data in NASA Worldview. Our study’s multi-sensor approach provided valuable 
insights for how water quality in the Hilo Bay region can be monitored in the future. 
 
Key Terms 
remote sensing, water quality, public health, turbidity, chlorophyll-a, Sentinel, Landsat, MODIS, Google 
Earth Engine 
 
Land Acknowledgment 
Our team acknowledges that the ‘āina (that which feeds) or land on which this project has grown out of is the 
ancestral homeland of Kanaka Maoli (Native Hawaiians) and that it is due to their pono that we can be here 

today. As visitors and settler aloha ‘āina in the moku of Hilo on Hawaiʻi Island, we are deeply grateful for the 
generations of Native Hawaiians who have stewarded, cared for, and honored this ‘āina over the past 1,600 
years. 

 

2. Introduction 
2.1 Background Information 
Hilo Bay has been called the ‘piko’ (navel or place where life begins) of the Hilo community (Hilo Bay 
Muliwai Hui, 2013). The Hilo Bay watershed holds many culturally and historically important sites for both 
Native Hawaiians and local community members. The Hilo Bay region is home to over 50,000 residents and 
is in the 89th percentile for wastewater discharge in the United States, which means that community members 
are subject to a higher degree of risk from contaminants from on-site sewage disposal systems, like cesspools 
and wastewater treatment facilities (EJScreen, 2024). Poor water quality poses a public health concern for 
those who interact with its waters when paddling, fishing, surfing, and swimming. With Hilo as the third 
rainiest city in the United States, Hilo Bay receives heavy sediment run-off from the Wailuku River along with 
nutrients from onsite wastewater disposal systems that drain into the bay through the Wailoa River (Figure 1; 
Hilo Bay Muliwai Hui, 2013; Wiegner and Mead 2009). Levels of nutrients, turbidity, and fecal bacteria in the 
Bay have exceeded state water quality standards since the late 1970s, and in 1998 the United States 
Environmental Protection Agency officially listed Hilo Bay on the 303(d) list of impaired waters (Wiegner & 
Mead, 2009; Hilo Bay Muliwai Hui, 2013; Silvius et al. 2005). The breakwater protecting Hilo town from 
tsunamis obstructs circulation, increasing the residence time of contaminants in Hilo Bay (Wiegner & Mead; 
Hasslinger, 2020). Health concerns inhibit community members from fully utilizing Hilo Bay, as only 10% of 
people who use its beaches swim in it (Hasslinger, 2020; Wiegner & Mead, 2009). 
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Figure 1. The study area focused on the Hilo Bay region, extending from Pāpaʻikou in the North to 

Richardson’s Beach in the southeast. The Wailoa and Wailuku rivers are the major inputs of Hilo Bay. Stream 

and urban land use layers were acquired through the Hawaiʻi Statewide GIS Program. 
 

To protect the community from the potential hazards of bacteria and contaminants in the water, the Hawaiʻi 
Department of Health’s (HDOH) Clean Water Branch (CWB) issues brown water advisories (BWAs). BWAs 
are issued after flash floods, heavy rainfall events, wastewater discharges or visual inspections of turbid 
waters. Turbidity is determined by the amount of light scattered by particulates within water, which affect the 
color and clarity (USGS 2018). Turbidity has been used as an indicator for sediment and other contaminants, 
as well as for hazardous bacteria concentrations. In Hilo Bay, concentrations of harmful bacteria like 
Clostridium perfingens and Enterococcus displayed a positive correlation with turbidity, making turbidity a good 
proxy water quality indicator when evaluating satellite data for public health concern (Wiegner et al., 2016). In 
addition to reducing water clarity, turbid waters from wastewater inputs can contain excess nutrients, which 
feed algae and produce anaerobic environments that are inhospitable for aquatic life. Chlorophyll-a, a 
pigment within algae, can be identified through satellite data and has been used in remotely sensed water 
quality monitoring.  
 
Issuing timely and accurate BWAs poses a challenge due to the intense river flows and high-volume 

discharges into Hilo Bay from heavy precipitation events and Hawaiʻi Island’s extreme topography 
(Tomlinson, 2003). Traditionally, water quality monitoring has entailed using in-situ measurements by 
collecting field samples that are tested in a lab for their bio-physical and chemical properties. While in-situ 
methods have high accuracy, they are time-consuming, expensive, and not feasible for monitoring large 
bodies of water and coastal regions (Duan et al. 2013). In contrast to the immense amount of time, effort, 
and money required for in-situ data collection, satellite remote sensing has the potential to provide an 
efficient and cost-effective alternative for monitoring vast water bodies like Hilo Bay (Peterson et al., 2019; 
Sagan et al., 2020). Previous water quality studies have successfully used Earth observations (EOs) from 
multispectral satellite imagery to examine water quality parameters like chlorophyll-a and turbidity at a 
regional scale (Kuhn et al. 2019; Dogliotti et al., 2015; Li et al., 2022; Ma et al. 2021; Mishra & Mishra, 2012).  
 
Given the successful track record of EOs in water quality monitoring, our team studied the feasibility of using 
remotely sensed water quality parameters, turbidity and chlorophyll-a, to assess brown water patterns in Hilo 
Bay. This study leveraged EO data from Sentinel-2 Multispectral Instrument (MSI), Landsat 8 Operational 
Land Imager (OLI), Landsat 9 OLI-2, and Aqua and Terra Moderate Resolution Imagine Spectroradiometer 
(MODIS). To understand the spatial and temporal distribution of brown water patterns, we examined satellite 
derived measurements of turbidity and chlorophyll-a plumes before, during and after BWAs, as well as several 
case studies that offered further insight into the water quality of the Hilo Bay region. 

2 
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2.2 Project Partners and Objectives 
Our team partnered with the Hawaiʻi County Office of Sustainability, Climate, Equity, and Resilience 

(OSCER). Established in 2023, OSCER works to advance climate and resilience goals across Hawaiʻi Island 
with the goal to uplift the health of the land and people. One of the many projects OSCER seeks is enhanced 
monitoring methods to protect water quality and to ensure sustainability of Hilo’s coastal ecosystems. Our 
study’s primary objective was to determine the feasibility of using EOs as an efficient and cost-effective 
supplement to current in situ water quality monitoring methods. To do so, we analyzed water quality 
parameters of turbidity and chlorophyll-a, which are potential indicators for brown water and can be 
monitored through EOs. The team sought to generate water quality time series and maps, contrasting periods 
of BWAs and non-BWAs, to investigate the relationship between precipitation, turbidity and chlorophyll-a 
and to support end-user decision-making. 

 

3. Methodology 
3.1 Data Acquisition 
3.1.1 Earth Observation Data and Acquisition 
For our study, we used data from the NASA and United States Geological Survey (USGS) Landsat missions, 
NASA’s MODIS mission, and the European Space Agency (ESA) Sentinel mission. Landsat 8 OLI data 
extends from April 2013 to June 2024, and Landsat 9 OLI-2 data extends from January 2022 to June 2024. 
For both missions we used Level 2, Collection 2, Tier 1 datasets available in Google Earth Engine (GEE) that 
included processing for atmospherically corrected surface reflectance. Data from Sentinel-2 MSI level 1C 
extends from December 2015 to June 2024 (Table 1). To process our data, we used the Optical Reef and 
Coastal Area Assessment (ORCAA) tool, a GEE script created by a previous DEVELOP team (GEE; 
Pippen et. al., 2019). Additionally, we collected Aqua and Terra MODIS Regional Ocean Color (OC) data 
Version R2022.0 from the year 2018 for this study from NASA’s Ocean Biology Distributed Active Archive 
Center (OB.DAAC) (Table 1). 
 
Table 1 
Earth Observations used for water quality analysis of Hilo Bay 

Earth 
Observation  

Spatial 
Resolution 

Revisit 
Time 

Dates Source 

Aqua & Terra 
MODIS 

1 km 
1-2 days 

2018 NASA (OB. DAAC) 

Landsat 8 OLI 30 m 16 days April 2013 – June 2024 NASA & USGS (GEE) 

Landsat 9 OLI-2 30 m 16 days January 2022 – June 2024 NASA & USGS (GEE) 

Sentinel-2 MSI 10 m  5 days October 2015 – June 2024 ESA (GEE) 

 
3.1.2 Study Area and Ancillary Data 
We incorporated multiple ancillary datasets to build our shapefile and acquire our Earth observation data. To 
delineate our study area boundaries, our county partner provided the Hilo Bay watershed extent from the 
United States Army Corps of Engineers (USACE) (Silvius et, al. 2005). We acquired brown water advisory 
dates from the State of Hawaii’s Department of Health (HDOH) Clean Water Branch (CWB). We used daily 

precipitation totals from the Hawaiʻi Climate Data Portal (HCDP) to identify dates of interest for our study 
between March 2013 and June 2024 (Table 2).  
 
Table 2  
Ancillary datasets used to generate study area shapefile and analyses for turbidity patterns.   

Dataset File Type Dates Source 

Hilo Bay Watershed 
Extent  

Shapefile 2013 USACE  
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Streams Shapefile Updated 2022 
Hawaiʻi Statewide GIS Program, Hawaii 

Streams from DLNR, Division of 
Aquatic Resources (DAR) 

Land Use Districts Shapefile  Updated 2024 
Hawaiʻi Statewide GIS Program, State 
Land Use District Boundaries for the 8 

main Hawaiian Islands 

Brown Water Advisories  CSV 2013 - 2024 DOH – Clean Water Branch 

Daily Precipitation 
(see Appendix B, Link) 

CSV 2013-2024 Hawaiʻi Climate Data Portal 

 
3.2 Data Processing 
3.2.1 Brown Water Advisories  
To identify dates of interest for our study, we filtered the BWA dates issued for the Hilo Bay region from 
March 2013 to June 2024. Between March 2013 and June 2024, we found 1,457 advisories across the entire 

state of Hawaiʻi. We ultimately focused on 97 BWAs that fell within our study area and time (Table A1; Table 
A2). 
 
3.2.2 Available Landsat Imagery 
We created a GEE script to determine the total number of viable Landsat images for our study area. We 
applied a cloud mask using the “QA_PIXEL” band to remove all pixels classified as clouds. This resulted in 
cloud-masked true color images clipped to the study region. Our team visually assessed and identified imagery 
with continuous pixel coverage over the Hilo Bay region, also noting their dates (Figure 2). 
 

 
Figure 2. ORCAA Methodology to process turbidity data 

 
3.2.3 ORCAA Tool  
Our team utilized the second version of the Optical Reef and Coastal Area Assessment (ORCAA) tool. This 
tool was created by the Fall 2019 NASA DEVELOP Team and is publically available in GEE (Pippen et. al., 
2019). The ORCAA 2.0 Tool, created and improved by previous DEVELOP teams, provided a means to 
analyze and visualize various water quality parameters estimated from EO data over user-supplied regions and 
time periods of interest. We uploaded our study area shapefile as an asset and used the user interface to run 
our analyses. The ORCAA 2.0 tool has pre-set image collections that integrate Landsat 8 OLI and Sentinel-2 
data, as well as atmospheric corrections based on the Modified Atmsopheric correction for Inland water 
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(MAIN) algorithm (Page, et. al. 2019; Table 3). Our team made minor adjustments within the ORCAA 2.0 
code to optimize outputs tailored for our project (Table B1; Table B2).  
 
Table 3  
Water quality parameter algorithms in ORCAA 2.0 tool 

Satellite Parameter Algorithm/ 
Software 

Script 
Lines 

Bands Reference 

Landsat 8 OLI Turbidity 1420-1437 B4 Dogliotti et al. 2015 

Sentinel-2 MSI Turbidity 1439-1450 B4 Dogliotti et al. 2015 

Sentinel-2 MSI Chlorophyll-a 1453-1478 B4 (665 nm) and 
B5 (708 nm) 

Mishra et al. 2012 

 
3.2.4. Turbidity 
We analyzed estimates of turbidity calculated from Sentinel-2 MSI data using ORCAA 2.0. We used ORCAA 
to visualize turbidity estimates from the least cloudy image in each 10-day period between 2013 to June 2024. 
We identified dates where images covered at least 25% of the study area for further analysis. We then 
categorized these images by visually assessing the quality of the data over the study area (Figure 3). After 
assessing the available imagery for the study area, we identified all BWA dates between 2015 and 2024 using 
data from HDOH, CWB. We intersected the categorized images with the BWA dates to determine if they 
were collected within BWAs or alternate conditions.  
 

 

Figure 3. Criteria for selecting viable turbidity Sentinel-2 MSI imagery from ORCAA 2.0. The above images 
were taken from 9/5/2018, 2/17/2019, and 4/2/2020 respectively. Base map credit: Terra Metrics 2024 

 
3.2.5 Chlorophyll-a  
We acquired Aqua and Terra MODIS-derived chlorophyll-a data using a custom L-shaped spatial filter drawn 
in ArcGIS Pro 3.2.2 covering our study area. This processing step narrowed down available MODIS water 
pixels omitting land or breakwater pixels that could misinterpret land chlorophyll-a values for aquatic values. 
Pre-processed data using the chlorophyll-a algorithm from NASA’s Ocean Biology Processing Group 
(OBPG) generated resulting chlorophyll-a values (Werdell et. al, 2023). We used Python to clean the data and 

 

Poor image Good image Excellent image 

Over 57% of the 
study area shows 
cloud, wave, and/or 
color disruption, 
but the coast of the 
study area is visible.  

Over 75% of study 
area shows extreme 
cloud, wave, and/or 
color disruption, 
but the Hilo Bay 
section is visible. 

Over 90% of the 
study area is free of 
cloud, wave, and/or 
color disruption. 
And the coast of 
the study area is 
visible. 
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calculate average daily chlorophyll-a values for days without cloud interference over the study area and 
graphing software, R and Excel, were used to plot points for 2018 (Figure 4). 
 

 
Figure 4. Methodology to process chlorophyll-a data from Aqua and Terra MODIS. 

 
3.2.6 Precipitation 
We retrieved daily precipitation data from the HCDP for three monitoring stations in our study area, Hilo 

International Airport (ITO; 87), Institute of Pacific Islands Forestry (IPIF; 87.9), and Piʻihonua (89.11) 
(Appendix B; Hawaii Climate Data Portal, n.d.). We selected readings one month before and after each BWA 
and exported the data as CSV files. We also exported Sentinel-2 MSI mean turbidity data as CSV files using 
the ORCAA 2.0 time-series generator. 
 
3.3 Data Analysis 
3.3.1 Precipitation and Turbidity Analysis  
To understand the relationship between precipitation, turbidity, and BWAs, we analyzed three case studies: 
Hurricane Lane (August 2018), heavy rain (March 2021), and a sewage spill (November 2022). We 

consolidated the ITO, IPIF and Piʻihonua daily precipitation files within Microsoft Excel and computed the 
daily averages across the three stations. We then merged the daily precipitation averages with the Sentinel-2 
MSI mean turbidity data and generated a set of mean turbidity time series graphs. 
 
3.3.2 BWA Time Series 
To track spatial changes, we generated another time series graph combining Sentinel-2 MSI median turbidity 
and median chlorophyll-a from before, during, and after a BWA occurred in February 2021. We extracted the 
time series graphs for these parameters using the Time Series Chart Generator of ORCAA 2.0. Then, using 
Microsoft Excel, we created a single graph that cross-analyzed the data, highlighting the dates assigned as 
BWAs. 
 
3.3.3 Chlorophyll-a Analysis 
We created time-series outputs from ORCAA 2.0 for Sentinel-2 MSI chlorophyll-a and turbidity trends 
surrounding a case study BWA issued from March 1, 2021 to April 19, 2021. Additionally, we used R version 
4.3.3 to graph Aqua and Terra MODIS chlorophyll-a data across 2018. We used the MODIS data to examine 
the spatial and temporal patterns, as well as identify peak values within our study area. 

 
4. Results & Discussion 
4.1 Analysis of Results 
We provided a count of the image dates selected and classified for the project. We included example images 
illustrating turbidity levels during a BWA and when no BWA was in effect. Additionally, we displayed images 
that show turbidity plumes identified along the coast during a BWA, and images that documented the 
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progression of turbidity levels during a BWA event. The results also featured time series graphs that analyzed 
the relationship between turbidity mean levels and precipitation in three different cases, as well as the 
relationship between turbidity averages and chlorophyll-a averages during a BWA event. Finally, we presented 
a time series of chlorophyll-a levels specifically related to the Hurricane Lane BWA case in 2018. 
 
4.1.1 Sentinel-2 MSI and Landsat Imagery Availability 
When assessing Landsat 8 OLI and Landsat 9 OLI-2 true color images, the team found there to be 69 cloud 
free images between 2013 and 2024. Only 1 of these 69 viable images occurred during a BWA period (Table 
B1). When assessing Sentinel-2 MSI images, we found 82 viable images for the study. Out of these, 22 images 
coincided with BWAs, and 60 images were from non-BWA periods. Due to limited Landsat image availability, 
we decided to focus our study on Sentinel-2 MSI data. 
 
4.1.2 Analysis of the Turbidity Results 
After processing and analyzing the turbidity estimates, we confirmed that image-derived turbidity can serve as 
a reliable water quality indicator due to its consistently high levels during BWAs. Figure 5 illustrates this: it 
shows low turbidity levels in the Hilo Bay Region during non-BWA periods, compared to increased turbidity 
levels during BWAs, especially within Hilo Bay. 
 

 
Figure 5. Sentinel-2 MSI turbidity image from a non-BWA day February 16, 2022 (left) and a BWA day 

February 17, 2019 (right). Base map credit: Resource Mapping Hawaiʻi, Maxar. 
 
The team also analyzed the progression of a BWA by comparing the turbidity calculated from Sentinel-2 MSI 
data before a BWA (February 1 – 28, 2021), in the beginning of a BWA (March 1-14, 2021), in the middle of 
a BWA (March 15-31, 2021), and at the end of a BWA (April 1-19, 2021; Figure 6). The images show a 
gradual progression of turbidity extending north along the coast from Hilo Bay. Even though the turbidity 
values are relatively flat in both the first and final image, the average turbidity values increase following the 
BWA. 
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Figure 6. Time Series from Sentinel-2 MSI before, during, and after a Brown Water Advisory issued on 
3/1/2021 – 4/19/2021. A turbidity plume is shown in magenta and yellow flowing outwards from the 

western portion of the Bay. Base map credit: Resource Mapping Hawaiʻi, Maxar. 
 
While examining the coast, our team identified several turbidity plumes extending from the shoreline, often at 
river outflows. We recognized turbidity plumes not only by the prominent magenta coloration in certain areas 
but also by the yellow plumes extending offshore. Certain areas of magenta along the shoreline may not be 
reliable because they may be waves misidentified as high turbidity (Figure 7). Because of this, we also focused 
on yellow areas to understand the spatial distribution of turbidity. While our study did not focus on 
identifying exact point-source locations on land, this is an example of how sources of plumes may be 
identified and further analyzed in future studies. 
 

 
 
Figure 7. Example of Turbidity Plumes identification along the coast. Image taken on 02/17/2019 by Sentinel-

2 MSI. Base Map credits: NOAA Office for Coastal Management and United States Geological Survey. 
 
4.1.3 Analysis of Precipitation and Turbidity Results 
The following BWA graph for August 2018, issued during Hurricane Lane, shows corresponding 
precipitation spikes closely followed by turbidity increases of similar magnitude (Figure 8). The BWA graph 
for March – April 2021 captures multiple spikes in both precipitation and turbidity levels (Figure C1; Figure 
C2). Finally, the November 2022 BWA shows a precipitation spike followed by a subsequent turbidity 
increase (Figure D2). Later in the month, during a BWA for a sewage spill, there is a marked increase in 
turbidity with a significant time lag after the BWA, during a period of low precipitation values. These results 
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show that EOs can offer improved tracking of high turbidity events and better define their spatial and 
temporal longevity over traditional in situ water sampling and visual assessment methods.  
 

 
 

Figure 8. The BWA graph for August – September 2018 with precipitation and turbidity spikes. 
 
4.1.4 Analysis of the Time series of the Parameters During a BWA 
The ORCAA 2.0 Sentinel-2 MSI time series for turbidity and chlorophyll-a during a BWA between February 
– April 2021 indicated that the highest turbidity values occurred simultaneously with the issued BWA, marked 
by the brown box (Figure 9). In contrast, chlorophyll-a values remained relatively stable during this period, 
suggesting an independent relationship between turbidity and chlorophyll-a during a BWA scenario. 
 

 
Figure 9. Comparison of chlorophyll-a (mg/m^3) and turbidity (FNU) before, during, and after a Brown 

Water Advisory issued from March 1, 2021, to April 19, 2021.  
 
4.1.5 Analysis of the Chlorophyll-a Results 



   

 

11 

 

Sentinel-2 MSI did not provide detailed spatial variation for chlorophyll-a patterns. Despite a lower spatial 
resolution than Sentinel-2 (10 m), MODIS chlorophyll-a data (30 m) provided better temporal variation in 
chlorophyll-a patterns for the year 2018. The plotted data showed maximums for MODIS data aboard Aqua 
and Terra satellites occurring after Hurricane Lane, which was a Category 5 hurricane that struck the 
Hawaiian Islands between August 22 to August 26 of 2018 (Figure 10). Accompanying images, which can be 
found on the OB.DAAC, support the spatial changes with heightened chlorophyll-a values visible on the east 

side of Hawaiʻi Island near Hilo Bay. 
 

 
Figure 10: Chlorophyll-a values from Aqua and Terra MODIS during 2018 showed peaks occuring after 

Hurrican Lane and increased values for the rest of the year. 
 
4.2 Errors & Uncertainties  
The errors and uncertainties faced in this study include the issues found in optically complex environments of 
coastal zones; the consistent cloud cover in Hilo; lengthy satellite revisit time; and the turbidity units used 
within the ORCAA tool. Coastal zones are categorized as optically complex environments for collecting 
Earth observation data because up to 90% of the signal received by satellite instruments comes from the 
atmosphere and less than 10% of the signal is reflected from the water or bottom surface (Torres-Pérez & 
McCullum, 2020). This makes it critical to have an accurate atmospheric correction. The performance of the 
atmospheric correction algorithm Modified Atmospheric Correction for INland waters (MAIN) has not been 
assessed or validated, creating even more uncertainty regarding its accuracy (Valenti et al., 2019). Several 
studies agree that more work needs to be done to advance atmospheric correction, as it poses an obstacle to 
achieving accurate results (Sagan et al. 2020; Zhu et al. 2022). 
  
Cloud interference, wave action, and algorithms not calibrated to our study area also produced uncertainty in 
our analysis of turbidity and chlorophyll-a levels in the region. Due to cloud interference, less than 25% of 
available Landsat images during the study period were usable for our study area. This limited availability of 
imagery was exacerbated by 16-day revisit times for Landsat 8 OLI and Landsat 9 OLI-2. In addition, 
ORCAA consistently misidentified wave action and whitecaps as high turbidity within the Hilo Bay Region, 
suggesting additional operational controls may be required to produce high quality turbidity maps. 
Chlorophyll-a algorithms also produce low confidence values in shallow, coastal waters which likely affected 
the accuracy produced by the ORCAA tool (Blondeau-Patissier et al. 2014). 
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A challenge that may impact partner implementation of this study is related to the turbidity units used by 
ORCAA. While Nephelometric Turbidity Units (NTU) is a more widely adopted unit of measure for turbidity 
within the United States and is based on Environmental Protection Agency (EPA) standards, ORCAA 
algorithms are calibrated to FNU instead. While these units are similar, they are not identical, which means 
that our partners may need a separate model calibration for projects requiring compliance with EPA 
standards. Despite the challenges and the degree of uncertainty within our study’s results, our results provide 
promising evidence that Earth observations can be used to inform future water quality monitoring in the Hilo 
Bay Region. 
 
4.3 Feasibility & Partner Implementation  
Through an assessment of available Sentinel-2 and Landsat 8 turbidity imagery, our team found it feasible to 
visually identify turbidity plumes in Hilo Bay and along the coast with EO data. This study found higher 
concentrations of turbidity within Hilo Bay at the mouths of the Wailuku and Wailoa Rivers, with smaller 
turbidity plumes extending along the coast north of Hilo, most frequently at the mouth of other rivers and 
stream. Knowing where turbidity plumes are consistently located in Hilo Bay and along the coast can support 
OSCER’s decision-making regarding what water sampling locations should be prioritized on a regular basis 
following heavy rainfall or water treatment failures. Our team produced time-series charts with the ORCAA 
tool to assess temporal variability of turbidity values before, during, and following BWAs. When assessing the 
temporal variability of turbidity, we found turbidity values increased during BWAs but found no known 
correlation between turbidity and chlorophyll-a levels. When assessing chlorophyll-a levels within the Hilo 
Bay region, we found the values to show little spatial and temporal variation. Because of this, chlorophyll-a 
plumes and their spatial variability could not be easily identified within our study region. As a result, we 
explored Aqua and Terra MODIS chlorophyll-a values from NASA Worldview along the windward (East) 

side of Hawaiʻi Island for the year 2018, before, during, and after Hurricane Lane. When expanding beyond 
our study area to the broader coastal region, variability in chlorophyll-a values became more apparent. While 
this method of assessing chlorophyll-a levels comes at a lower spatial resolution, the frequent revisit time of 
Aqua and Terra satellites makes close to real-time water quality monitoring possible. 
 
4.3.1 Future Work 
Our team sees two main pathways for future studies: refining water quality monitoring of turbidity and 
chlorophyll-a in the coastal zone or shifting focus to identify land-based point-source locations contributing 
to heightened turbidity and chlorophyll-a values using EO data. To further refine water quality monitoring, 
the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) instrument and Visible Infrared Imaging Radiometer 
Suite (VIIRS) instrument may provide fruitful avenues for further investigation. While our study focused on 
the feasibility of monitoring turbidity and chlorophyll-a levels within the Hilo Bay region, future studies could 
refine the analyses of the land-water boundary by including land cover classification and topographic data in 
the watershed and coastal region to identify point-source locations for turbidity plumes (Figure D1). Further 
investigation is also needed to determine the links between precipitation and EO information. 

 

5. Conclusions 
The persistent issue of brown water in the Hilo Bay region highlighted the need for understanding spatial and 
temporal patterns of water quality parameters, specifically turbidity and chlorophyll-a. This study 
demonstrated the viability of using Earth observations to monitor water quality in the Hilo Bay region. We 
found a considerable increase in turbidity during most BWAs analyzed when compared with non-BWA water 
quality data. We also found Sentinel-2 MSI data to be more suitable than Landsat 8 OLI data for analyzing 
turbidity in the Hilo Bay region due to greater data availability. While turbidity in the Hilo Bay region was 
most concentrated in Hilo Bay, smaller plumes extending off the coast were also visible in several turbidity 
maps and coincided with BWAs. Further analysis of Sentinel-2 MSI turbidity data can be used to identify 
point-source locations of turbidity inputs by analyzing data across different BWAs and identifying 
consistently visible turbidity plumes. 
 

https://worldview.earthdata.nasa.gov/
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While we found no observable correlation between chlorophyll-a and turbidity, we did, however, see the 
outflow of the Wailoa River as a consistent location for chlorophyll-a concentrations, as seen from Sentinel-2 
MSI chlorophyll-a data. When compared with turbidity data, chlorophyll-a levels from Sentinel-2 MSI were 
relatively flat within the extent of our study region. When zooming out beyond the extent of our study area, 
we found Aqua and Terra MODIS chlorophyll-a data to be a promising avenue for near real-time (daily) 
chlorophyll-a monitoring of the larger coastal region. The time-series we produced using NASA Worldview 
Aqua and Terra MODIS chlorophyll-a data for the year 2018 shows that chlorophyll-a levels increased after 
Hurricane Lane. This methodology could be employed in future water quality monitoring following serious 
weather events. 
 
The maps and charts our team produced provide a view into water quality in the Hilo Bay region from 2013 
to 2024. The methodology outlined in this study can be reproduced to monitor turbidity within the Hilo Bay 
region in the future during both non-BWA time periods and BWAs, as well as to monitor chlorophyll-a levels 

in the broader region. All data and tools used are open-access and can be used by the County of Hawaiʻi, 
other researchers, and community scientists alike to further understand water quality dynamics in the Hilo 
Bay region in the past, present, and future. In addition to generating maps and charts for this study, we also 
created a community brochure for outreach, education, and community engagement to keep community 
members in-the-know on this important issue regarding local water quality. 
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7. Glossary 
ArcGIS Online: a cloud-based mapping and analysis solution. Use it to make maps, to analyze data, and to 
share and collaborate 
ArcGIS Pro 3.2.2: a desktop GIS software developed by ESRI 
BWAs: Brown water advisories 
Chlorophyll-a: Chlorophyll-a allows plants to photosynthesis and is used to measure algae growing in a 
waterbody 
EO: Earth observation; Satellites and sensors that collect information about the Earth’s physical, chemical, 
and biological systems over space and time 
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CWB: Clean Water Branch; protects the public health of residents and tourists who enjoy playing in and 
around Hawaii's coastal and inland water resources 

HCDP: Hawaiʻi Climate Data Portal; a centralized resource for access to high-quality, up-to-date access to 
climate data, research, and visualization tools 

HDOH: Hawaiʻi Department of Health; a state agency of Hawaiʻi, functions under the leadership of the 
Director and Deputy Director, and includes attached offices and agencies. 
Landsat 8 OLI: Landsat 8 is a satellite launched on February 11, 2013, with one of its two sensors being the 
Optical Land Imager. 
MODIS: Moderate Resolution Imagine Spectroradiometer, a sensor on NASA satellites Aqua, Terra 
OB. DAAC: NASA’s Ocean Biology Distributed Active Archive Center 
NASA Worldview: an online platform where satellite data can be viewed around the world 
OSCER: Office of Sustainability, Climate, Equity & Resilience 
Python: a programming language used in our study 
R: a programming language for statistical analysis and data visualization used for our study 
Sentinel-2 MSI: Sentinel-2 Multispectral Instrument  
Turbidity: Turbidity is determined by the amount of light scattered by particulates within water affecting the 
color and clarity (USGS 2018) and has been used as an indicator for sediment and other contaminants. 
USACE: US Army Corps of Engineers 
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9. Appendices 
 

Appendix A: Available Imagery 
Table A1 
Landsat 8 OLI viable image dates from 2013-2024  

Year 

Viable 
Image 

Dates (with 
applied 

cloud mask) 

Year 

Viable 
Image 

Dates (with 
applied 

cloud mask) 

Year 

Viable 
Image 

Dates (with 
applied 

cloud mask) 

2013 

6/17/2013 

2017 

1/3/2017 
2020 

4/1/2020 

9/5/2013  2/4/2017 12/29/2020 

11/24/2013 4/9/2017 

2021 

3/3/2021 

12/10/2013 5/27/2017 4/20/2021 

2014 

1/27/2014 7/14/2017 7/9/2021 

6/20/2014 8/15/2017 10/29/2021 

 7/6/2014 8/31/2017 

2022 

1/17/2022 

 9/24/2014 10/2/2017  2022-04-07 

11/11/2014 11/3/2017 7/28/2022 

2015 

1/30/2015 12/5/2017 8/29/2022 

5/6/2015 

2018 

2/7/2018 9/30/2022 

5/22/2015 5/14/2018 

2023 

4/10/2023 

7/9/2015 12/8/2018 4/26/2023 

8/10/2012 

2019 

1/25/2019 5/12/2023 

10/13/2015 2/26/2019 8/16/2023 

2016 

1/1/2016  5/17/2019 10/19/2023 

3/5/2016  7/20/2019 11/20/2023 

5/8/2016  9/22/2019 2024 None 

7/11/2016 10/24/2019     

9/29/2016       

10/15/2016       

 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 

19 

 

Table A2 
Landsat 9 OLI-2 viable image dates from 2022 – 2024 

Viable Image 
Dates (with 

applied cloud 
mask) 

Year 

 1/9/2022 

 2/10/2022 

2022 6/2/2022 

 8/21/2022 

 11/9/2022 

 12/27/2022 

 1/12/2023 

2023 3/17/2023 

 8/8/2023 

 10/27/2023 

2024 None 

 
 

 
  



   

 

20 

 

Appendix B: Usable BWA Dates for Acquiring Satellite Imagery 
Table B1 
Brown water advisory useful imagery dates for Sentinel-2 MSI 

 

TURBIDITY 

Brown Water Advisory Date Sentinel-2 
Date 

ORCAA 
Quality image 

Note 
Type of BWA Start Closure 

Heavy rain 8/23/2016 8/30/2016 8/26/2016 Poor One section works 

Heavy rain 8/30/2016 9/13/2016 9/5/2016 Good Doesn't show much turbidity 

Heavy rains 12/14/2016 12/21/2016 12/14/2016 Poor Show something 

Heavy rain 10/30/2017 12/31/2017 11/4/2017 Good Has clouds disturbance 

Heavy rain 10/30/2017 12/31/2017 12/24/2017 Excellent Has some clouds disturbance 

Heavy rain 1/1/2018 1/5/2018 1/3/2018 Excellent Doesn't show much turbidity 

Hurricane lane 8/24/2018 9/4/2018 8/31/2018 Good Good visualization 

Hurricane lane 8/24/2018 9/7/2018 9/5/2018 Poor Good visualization 

Heavy rain 9/4/2018 12/31/2018 11/9/2018 Good Good visualization 

Rough ocean conditions 1/28/2019 3/6/2019 2/17/2019 Good Good visualization 

Rough ocean conditions 1/28/2019 3/6/2019 1/28/2019 Poor One section works 

Heavy rain 1/8/2020 1/22/2020 1/3/2020 Excellent Good 

Heavy rain 1/8/2020 1/22/2020 1/18/2020 Poor The bay section works 

Heavy rain 4/2/2020 4/28/2020 4/2/2020 Excellent Has one cloud small section 

Undetermined 10/14/2020 10/20/2020 10/14/2020 Excellent Has some clouds disturbance 

Heavy rain 3/1/2021 4/19/2021 3/3/2021 Excellent Good visualization 

Heavy rain 12/13/2021 12/22/2021 12/18/2021 Poor One section works 

Broken air feed line 11/24/2022 11/29/2022 12/23/2022 Excellent Doesn't show much turbidity 

Heavy rain 3/6/2023 4/10/2023 3/8/2023 Excellent Doesn't show much turbidity 

Heavy rain 7/19/2023 7/28/2023 7/26/2023 Poor Has many waves disturbance 

Heavy rain 11/30/2023 1/4/2024 12/28/2023 Good Doesn't show much turbidity 

Heavy rain 2/27/2024 3/19/2024 3/2/2024 Good Weird colors 



   

 

21 

 

Table B2  
Brown water advisory useful imagery dates 
 

TURBIDITY 

Not a Brown Water Advisory Date 

Note 
Year Date 

ORCAA Quality 
image 

2016 11/4/2016 Good One section works 

2017 1/3/2017 Excellent Excellent 

2017 2/12/2017 Excellent Excellent 

2017 7/7/2017 Good Has waves disturbance 

2017 8/16/2017 Good Has waves disturbance 

2017 9/5/2017 Good Has clouds disturbance 

2017 9/25/2017 Excellent Good 

2018 1/13/2018 Good Must adjust color 

2018 2/2/2018 Good Good 

2018 3/29/2018 Good Must adjust color 

2018 9/10/2018 Good Show something interesting 

2019 3/29/2019 Excellent Not BWE image 

2019 5/18/2019 Poor has many waves disturbance 

2019 7/27/2019 Poor has many waves disturbance 

2019 9/10/2019 Poor has many waves disturbance 

2019 10/5/2019 Good Not BWE image 

2020 2/17/2020 Excellent Good 

2020 5/17/2020 Poor has many waves disturbance 

2020 6/26/2020 Poor has many waves disturbance 

2020 7/1/2020 Poor has many waves disturbance 

2020 9/4/2020 Excellent Excellent 

2020 9/19/2020 Excellent Has some clouds disturbance 

2020 9/29/2020 Excellent Good visualization 

2020 10/9/2020 Excellent Excellent 

2020 11/8/2020 Good Has some clouds disturbance 

2020 11/13/2020 Good Has some clouds disturbance 

2020 12/31/2020 Good Has some clouds disturbance 

2021 2/6/2021 Good Some missing pixels 

2021 4/17/2021 Good has some waves disturbance 

2021 4/27/2021 Poor has many waves disturbance 

2021 6/1/2021 Poor has many waves disturbance 

2021 8/20/2021 Poor Waves, not turbidity visual 

2021 8/15/2021 Good Some waves disturbance 
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2021 9/4/2021 Poor Waves and clouds 

2021 9/14/2021 Excellent Not much turbidity 

2021 10/4/2021 Excellent Not much turbidity 

2021 10/29/2021 Good Some waves disturbance 

2021 11/3/2021 Excellent Excellent 

2021 11/28/2021 Good The coast section works 

2022 1/7/2022 Excellent Some empty spaces for clouds 

2022 1/17/2022 Good Some empty spaces for clouds 

2022 2/1/2022 Poor Some empty spaces for clouds 

2022 2/16/2022 Excellent Some turbidity 

2022 3/13/2022 Good Not covers the central bay 

2022 6/21/2022 Poor Bad color in some areas 

2022 9/29/2022 Good Not covers the central bay 

2022 10/14/2022 Excellent Excellent 

2023 1/12/2023 Excellent Not BWE image 

2023 2/1/2023 Good Adjust color 

2023 2/8/2023 Excellent Excellent 

2023 5/12/2023 Poor has many waves disturbance 

2023 9/29/2023 Poor Not covers the central bay 

2023 10/14/2023 Excellent Excellent 

2023 11/3/2023 Excellent Excellent 

2023 11/13/2023 Poor has many clouds disturbance 

2024 2/1/2024 Excellent Excellent 

2024 3/2/2024 Excellent a little dark 

2024 5/11/2024 Good Weird color 

2024 7/5/2024 Poor Weird color 
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Appendix C: Case Studies Featuring Turbidity and Precipitation 
 
 

Figure C1. March – April 2021 BWA, Turbidity and Precipitation Graph 
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Figure C2. November – December 2022 BWA, Turbidity and Precipitation Graph 
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Appendix D: Impervious Surface Cover in Hilo Town 
 

 
 

Figure D1. Hilo town’s impervious surfaces with turbidity displayed in the Hilo Bay region. 

 


