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Abstract 
Knowing the location and behavior of active faults is essential for earthquake 

hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar 

(InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are 

manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP 

California Disasters team contributed to the development of a method to expedite 

fault detection in California using remote-sensing technology. The team utilized InSAR 

images created from polarimetric L-band data from NASA’s Uninhabited Aerial Vehicle 

Synthetic Aperture Radar (UAVSAR) project. 

A computer-vision technique known as “edge-detection” was used to automate 

the fault-identification process. This project tested and refined an edge-detection 

algorithm under development through NASA’s Earthquake Data Enhanced Cyber-

Infrastructure for the Disaster Evaluation and Response (E-DECIDER) project. To optimize 

the algorithm both UAVSAR interferograms and synthetic interferograms generated 

through Disloc, a web-based modeling program available through NASA’s QuakeSim 

project, were used. The initial study focused on earthquake faults that revealed 

themselves through coseismic and post-seismic displacements in the Imperial Valley, 

California, relative to the April 4, 2010, El Mayor-Cucapah earthquake in Baja California, 

Mexico. Using an edge-detection code and both synthetic and UAVSAR data-based 

interferograms, the team contributed to the development of an automated 

methodology to quickly process interferometric data, allowing the identification of 

motion along known and unknown faults in a large area to proceed in an efficient 

manner. The results of the methodology were compared with fault data from other 

studies on El Mayor-Cucapah-earthquake-related faulting and found to be 

comparable. 

The algorithm detected seismic, aseismic, and coseismic slip along faults that 

were identified and compared with databases of known fault systems.  

This optimization process was the first step toward integration of the edge-

detection code into E-DECIDER to provide decision support for earthquake preparation 

and disaster management. E-DECIDER partners that will use the edge-detection code 

include the California Earthquake Clearinghouse and the US Department of Homeland 

Security through delivery of products using the Unified Incident Command and Decision 

Support (UICDS) service. Through these partnerships, researchers, earthquake disaster 

response teams, and policy-makers will be able to use this new methodology to 

examine the details of ground and fault motions for moderate to large earthquakes. 

Following an earthquake, the newly discovered faults can be paired with infrastructure 

overlays, allowing emergency response teams to identify sites that may have been 

exposed to damage. The faults will also be incorporated into a database for future 

integration into fault models and earthquake simulations, improving future earthquake 

hazard assessment. As new faults are mapped, they will further understanding of the 

complex fault systems and earthquake hazards within the seismically dynamic state of 

California.  
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Introduction 
Background Information 

Knowing the location and parameters of current active faults in California, one 

of the most seismically active states in the United States, is essential to earthquake 

hazard assessment. Moreover, knowing where a fault has ruptured and the deformation 

it has caused following an earthquake is essential for earthquake disaster response. 

California recently experienced an earthquake that highlighted the need for knowing 

the location of active faults. On April 4, 2010, the moment-magnitude 7.2 El Mayor-

Cucapah (EMC) earthquake rattled Southern California. Although the epicenter of this 

quake was in Baja California, interferograms developed within weeks of this earthquake 

revealed both the motion of main fault and coseismic motion in a network of 

neighboring faults in both Mexico and California. Radar interferometry discovered that 

the main shock caused ruptures of the Borrego and Pescadores faults, faults that had 

been mapped but were considered inactive (Wei et al.). Furthermore, radar 

interferometry revealed triggered slip on neighboring faults, most of which were 

unmapped (Wei et al.). Subsequent radar studies of the area revealed continued 

motion during the next several months due to gradual stress redistribution and 

aftershocks. Thus, the El Mayor-Cucapah earthquake reaffirmed the effectiveness of 

using radar interferometry to detect faults. 

Radar interferometry is becoming a more widely employed method for fault 

detection. Interferograms constructed from radar data obtained by satellites or 

airplanes have been used to detect and quantify ground changes or ground motion 

remotely over large areas since the late 1990’s.  Currently, interferograms are manually 

inspected to locate faults that are affected by an event. In an effort to decrease the 

time it takes to scan UAVSAR interferograms, Dr. Parker of NASA’s Jet Propulsion 

Laboratory has developed an edge detection algorithm to automate the fault 

detection process. In collaboration with Dr. Parker, the DEVELOP California Disasters 

Team was tasked to improve the performance of the edge detection algorithm, to 

further demonstrate its use in detecting fault features, and to create detailed risk 

assessment maps of the study areas. 

Synthetic Aperture Radar data from the Unmanned Aerial Vehicle Synthetic 

Aperture Radar (UAVSAR), one of NASA’s Earth Observation Systems (EOS) was 

downloaded for use. This data was taken from a database maintained by QuakeSim, 

an online computational infrastructure self-described as “a project to develop a solid 

Earth science framework for modeling and understanding earthquake and tectonic 

processes” (2011). UAVSAR is mounted on a NASA-operated Gulfstream GIII aircraft and 

consists of an array of active radar sensors that pulse L-band frequency (f=1-2 GHz; λ 

=15-30 cm) waves at a target (Toan, 2007). The aperture (“antenna”) size directly 

affects the resolution of the image created. By combining echoes from multiple radar 

pulses, an “antenna” longer than the physical sensor itself is synthesized, allowing higher 

resolution images to be created than would be possible for other radar instruments of 

comparable size (Rosen, 2008). Radar in this frequency (L-band) is powerful because it 

is insensitive to clouds, light rain, nor foliage (Toan, 2007). The “tube’s” size is such that 

flight-path discrepancies can be processed out of the raw data later. Additional 

discrepancies based on airplane tilt are accommodated by steering the antenna array 

independently of the aircraft. UAVSAR capitalizes on these attributes by flying the same 

path within a 10-meter diameter “tube” at two moments in time. By “interfering” the 
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data, processing the phase measurements of these two images in concert, the result is 

precise data on ground surface movement with sensitivity on the millimeter-resolution 

scale. This data is representative of changes that have occurred during the time period 

between the two images in the distance from the UAVSAR instrument to the ground, 

making UAVSAR a valuable tool for studying earthquake events. 
Radar interferometry has proven useful for fault detection, but significant issues 

remain preventing the automated exploitation of the data. An example issue with 

automated fault detection is “white noise” in the fault maps produced by the 

algorithms. Features such as dry riverbeds, highways, and roads in the radar data result 

in false positives in the fault maps. To fully automate the edge-detection code, the 

white noise will need to be removed to produce a fault map where the only edges 

detected correspond to surface fault traces. 

 

Project Objectives 

The main objective was to utilize UAVSAR-derived interferograms as well as modeled 

synthetic interferograms to test and optimize the edge-detection algorithm. In the 

testing and optimization process, the faults identified in the UAVSAR interferograms are 

to be compiled into a small database of faults. Using the detected faults, synthetic 

interferograms will be produced as inputs into E-DECIDER to create tilt and deformation 

maps. The tilt and deformation maps, along with infrastructural and demographic data, 

will be utilized to create a risk assessment map. 

 

Study Area  

The study focused initially on a small area of the Imperial County in Southern California. 

 

 
 

Figure 1. Interferogram of case study area in Imperial Valley, Southern California. 
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This study area was chosen because it contains the highest density of UAVSAR 

coverage of the 2010 El Mayor-Cucapah Earthquake. The San Diego and Imperial 

Counties also have a general high earthquake hazard. The areas provide a suitable 

context to test the development of this edge detection algorithm against features that 

are well studied in established literature. The spatial polygon used as a case study for 

parameter variation was defined by latitude/longitude points: 32.733822, -115.858172; 

32.733822, -117.728489; 32.653908, -115.728489; 32.653908, -115.858172. This area will be 

referred to as PolySel2 from this point forward. InSAR from other areas of California were 

observed, but not utilized extensively.  

 

Study Period 

 During the initial stage of the project, UAVSAR data from October 21, 2009 and 

April 13, 2010 was used to study the April 4, 2010 El Mayor-Cucapah Earthquake. Once 

this method was mostly established, UAVSAR data from several time periods between 

2007 and 2013 was employed. 

 

National Application Addressed 

 This project addresses NASA’s Natural Disasters application area of the national 

Applied Sciences Program by utilizing remote sensing data from NASA’s Earth Observing 

System (EOS), modeling techniques, and analysis to aid geohazard preparation and 

response. 

Project Partners 

The California Earthquake Clearinghouse (CEC) serves to provide a temporary 

organization following an earthquake disaster to coordinate field investigations, 

facilitate the dissemination of knowledge produced by and for, emergency responders, 

engineering, and scientific communities. The Clearinghouse is composed of five state 

and national agencies as well as numerous member organizations whose collective 

goal it is to cooperate and share data, information, and expertise following damaging 

earthquakes. The edge-detection tool will provide critical deformation information to 

the CEC, which can then be used by its members in their response efforts following a 

large earthquake. 

Science Applications International Corporation (SAIC) provides disaster 

mitigation, response, and recovery services to local governments, private and non-

profit organizations, state-governments, public utilities, and universities. In relation to 

earthquake disasters, SAIC provides the Unified Incident Command & Decision Support 

(UICDS) software delivery system for decision support products to California state 

emergency operations.  UICDS is a data-sharing framework constructed as part of the 

Department of Homeland Security’s Initiative for Information Sharing among 

Commercial, Government, Academic, and Volunteer Technology Providers to Support 

the National Incident Management System. 
 

Methodology 
The data used in this project were produced in two fundamentally different 

ways: multiple-pass UAVSAR and Quakesim Disloc3 modeling. The acquisition of these 

two data types was different as was the processing needed to convert each into the 

text formatting read by the edge detection code (hedge2lt.py). 
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       The UAVSAR data used was provided with prior processing to levels 1.1 and 1.5 

done by NASA’s Jet Propulsion Laboratory. Level 1.1 processing implies that the data 

has been compressed in both range and azimuth in slant range geometry (Alaska 

Satellite Facility). The Level 1.5 processing label implies that the data has been 

projected to map coordinates either by geo-referencing or geo-coding (Alaska 

Satellite Facility). The UAVSAR data used was collected from two primary sources: the 

UAVSAR Data Search tool on the uavsar.jpl.nasa.gov website and the InSAR Profile Tool 

on the QuakeSim.org website.  The files needed from each swath include a metadata 

file (.ann), a correlation data file (.cor.grd), an unwrapped phase data file (.unw.grd), 

and an unwrapped phase image (unw.kmz). 

UAVSAR data was converted into a format readable by the edge detection 

script (hedge2lt.py). To do this, a second script was employed (sar2simplex.py) which 

output three text files from the input UAVSAR data: the primary edge input and two 

secondary (index and summary) text files necessary to run the edge detection script. 

The sar2simplex.py script outputs two secondary files (index and summary) that 

the edge script needs along with the primary output of the script in simplex format 

(Figure 2). An option for the script is specifying a user-defined KML polygon to define a 

smaller area within the swath for which the script will output data. 

 
Figure 2. An example of Simplex formatting. Each row represents (from left to 

right): type (radar), x (km), y (km), LOS displacement, uncertainty, elevation angle 

(degrees), azimuth (degrees).  

 

The script has the ability to perform a few other functions as well, but they were 

not used. The optional KML region can be defined by creating a polygon on top of the 

interferogram (KMZ) in Google Earth and saving it to the folder where scripts and 

UAVSAR data are stored.  
Data produced by the QuakeSim Disloc3 deformation model is the result of a 

series of input parameters (Figure 3). 

Figure 3. Photo taken from Disloc portal of the input parameters needed to model a fault. 

 

Running the model produces a synthetic interferogram image with a text file 

output of yet another form (Figure 4).  

 
Figure 4. This image is an example of a disloc output text file. 
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The Disloc3 data must then be converted into a “simplex” text format including 

all of the parameters necessary for the edge detection script to run. This is done by a 

script (dis2los.py) that calculates line of sight for the data along with elevation angle 

and azimuth for a fake airplane that is imagined to be collecting the data in the 

defined area, much as UAVSAR would. This script (sar2simplex.py) also outputs the two 

secondary text files that the edge detection script requires to run. The edge detection 

script (edgar.py) can be run using the primary inputs in simplex format and the two 

supporting files (index and summary). The edge detection script outputs four images 

and two histograms. The primary output is the “edgemap.png” image that outlines the 

detected edge. The three additional images are variations of “raw” images of the 

swath and the two text files of histogram data. 
 For visual analysis, “edgemap.png” was imported into ArcMap to be geo-

referenced to the .kml polygon from which it had been defined. This raster, now a layer, 

was then output as a .kml file so that it could be visually assessed compared to the 

interferogram and satellite imagery of the region it covered in Google Earth. In this way 

visual assessment was done comparing detected edges to the evident faults in the 

interferogram image. 

 To refine the effectiveness of the edge detection script (edgar.py) multiple 

parameters were manipulated within the script to monitor how they affected the 

resultant edge map. The primary parameters manipulated included the high threshold, 

lower threshold, smoothing coefficient (sigma_for_presmooth), and aperture size. Other 

parameters that exist in the script include Gaussian die-off, threshold ratio, scale, 

minimum value (valmin), and “fraction_pixels_not_edges”; however, they were found 

not to affect the performance of the algorithm. 

 For a large portion of the refinement of the edge detection script a single 

UAVSAR image was used. This area had been identified for the purpose of research by 

Dr. Jay Parker of NASA’s Jet Propulsion Laboratory. It was established as a control for the 

known features, including faults, it contained as a reference to the edge script’s output 

images. This image was a time series interferogram (SanAnd_26501_09083-010_10028-

000_0174d_s01_L090HH_01) in the area of the El Mayor-Cucapah earthquake that 

occurred on April 4, 2010. The two images from which the interferogram was produced 

were taken on October 21, 2009 at 12:21 AM UTC and April 13, 2010 at 5:39 PM UTC. 

 As the edge script was refined, this method was confirmed in application to 

other InSAR imagery. 

Fault maps, or edge maps, were georeferenced to the polygon from which they 

were created using the georefencing tool in ArcMap. This allowed us to extract the 

exact latitude/longitude coordinates of the start and endpoint of the identified fault. 

This was then put into E-DECIDER’s KML Generator service to create a risk assessment 

map. This file was then opened in Google Earth to reveal the infrastructure potentially 

affected (within a defined radius) by the activity along the fault. 

Results & Discussion 

Analysis of Results: 
UAVSAR-Derived Data Results: 

           The deformation being detected by the edge detection algorithm is expressed 

as a line across which there is jump in values. This is because the features, faults, which 
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are being targeted, appear as a linear trace in the image due to the nature of the 

intersection of a fault plane with the ground surface. In an InSAR image, faults appear 

as a “tear in the fabric” of the image (Figure 5 – see appendix for figures 5 - 21). Other 

detected features that are non-faults are often polygonal or circular as they have two 

sides or edges along which the algorithm will detect a jump in values correlating to an 

edge. The script is set so that as differences in data values from one pixel to the next 

exceed a threshold, the script will recognize that as an edge and mark it as a positive 

output. From that point the script will attempt to extend the line in both directions from 

the initial point. Although these values may not exceed the upper threshold, the script 

will continue creating a line until values fall below a second, lower threshold. 

           The first parameter that was manipulated within the detection algorithm was the 

high threshold. The default value for high threshold is set to “0.013*255*2.0*1.5” or 9.945. 

The default value produced results with more noise in the image than is desirable, thus 

this value is increased to reduce noise (Figure 6). The data values are scaled between 0 

and 255 (grayscale), but since the range of values within the data set are not identical 

there is no standard or normalization for the grayscale values. As a result, the effect that 

changing the high threshold has on each UAVSAR image or polygon varies. Through 

testing different data and settings we have found that the scaling of data values done 

by the script may be flawed. Evidence of this is the fact that some images have shown 

that setting the high and low thresholds can yield a positive return in the scaled 

dataset. Additionally, there’s evidence that changes within the output occur when the 

high threshold is set above 255, which is theoretically the highest value any data point 

could have after scaling has been done. 

           The effect that the lower threshold has on edge detection was demonstrated to 

match what theory would dictate. That is to say that when the lower threshold was 

changed from its default value (50% of the high threshold) the edges detected would 

directly change in length i.e. a higher low threshold would shorten the length of edges 

(Figure 7). 

           Changing the smoothing coefficient (sigma_for_presmooth) created a similar 

effect in edges detected (Figure 8). Sigma was limited to relatively small values of 

roughly 1 to 10, the varying of which would produce significant differences in edge 

detection. Increasing the smoothing coefficient would eliminate small features and act 

to reduce the length of, or segment, long edges. 

           The final parameter manipulated with success was the aperture. This parameter 

deals with the averaging of pixel values to eliminate data dropouts and reduce the 

effects of extreme values. Raising the aperture (fixed to 3, 5, or 7 values) causes large, 

contour-like patterns to appear in the edge maps (Figure 9). This effectively requires 

that thresholds be set much higher to attain the same effect as with a lower aperture, 

but seems to reduce the noise present with the other parameters optimized (Figure 11). 

           After the California Disasters team tested the UAVSAR and synthetic 

interferograms with various parameters and shared the resulting edge maps, Dr. Parker 

added a function to output an image displaying the log of the magnitude of the phase 

gradient to the outputs of the edge detection code. This provided a visualization of, 

essentially, the data that was being processed by the edge detection script (Figure 12). 

What was found in the gradient map was that the river features have higher values 

than the faults themselves. This makes it impossible to isolate just the faults in the image 

without somehow dealing with the data having higher values than the faults. This would 
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likely involve the creation of a third threshold above the current upper threshold or 

some other data manipulation.  

           InSAR does not immediately discriminate between creep, triggered slip, or 

earthquake ruptures. However, the time frame in which displacements become visible 

to InSAR can be an indicator for interpretation of what kind of motion has occurred. 

Creep happens slowly and therefore does not readily appear in interferograms over 

short time scales. For example the creeping segment of the San Andreas Fault has a 387 

day time period showing the creeping motion of the San Andreas Fault (Figure 13). 

Because of the extended time period between data acquisitions and the high creep 

rate, the right-lateral creeping motion is captured by the interferogram as a distinct line. 

Unfortunately, large time intervals between data acquisition result in higher 

incoherence between images resulting in large data dropouts during interferometric 

processing (Figure 14). Although it should have been easy to detect an edge from this 

image a lot of noise was the end result. Due to the large data dropout, the edge-

detection code has trouble detecting the creeping segment of the San Andreas Fault 

in the image.  

           Another issue that presented a struggle throughout the summer was the 

inconsistency of the edge detection tool in producing results of similar quality from one 

swath area to the next. For example, a single polygon from a coseismic swath following 

the EMC earthquake was used for many tests as a control or reference point for 

variation. This was in part necessary because from polygon to polygon, data scaling 

done by the edge code would change causing the results produced by the image, 

and the amount of noise, to change significantly. To correct for the inconsistency, a 

later version of the fault edge detection algorithm was revised to scale thresholds 

roughly uniformly. This version of the code also defaults the aperture to 7, as opposed to 

the previous 3, and the low threshold ratio to 75%, as opposed to 50%, of the high 

threshold. The higher aperture has been deemed favorable at this point, although it 

forces the threshold higher, and the higher threshold ratio should decrease the amount 

of noise in the images even though it may decrease the length of faults detected.  

 

Synthetic Data Results: 

           Disloc3 was used to answer questions on whether fault detection was affected 

by physical fault parameters and the line of sight (LOS) of the aircraft. This was possible 

because Disloc3 creates and analyzes data with respect to LOS, elevation angle 

values, and physical fault parameters to create a synthetic interferograms (Figure 15). 

Tested physical parameters included fault displacement (Figure 16 , 17), fault 

orientation (strike relative to LOS) (Figure 18), and fault type (normal, thrust, strike-slip) 

with respect to threshold values. Results of this process revealed that fault orientation 

had an effect on the pattern of noise produced in a disloc output. This was true even 

for faults that had been isolated by optimizing the threshold for a given image, if the 

orientation of the fault was changed for the same parameters, noise may reappear in 

the image. There were distinct patterns of noise that arose from the disloc model which 

did not mirror patterns of noise found in UAVSAR data. This is what one would expect to 

some degree; however, it does create a certain amount of uncertainty as to how much 

one can generalize these results to real data. Results in relation to displacement values 

were quite direct. The greater the displacement value, the larger a threshold had to be 

to isolate the fault trace and eliminate the background noise in the image. In these 

cases, noise also culminated in distinct patterns uniquely created by the disloc model. 
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 Differences between thrust and normal fault traces were minimal in edge maps 

created from disloc data, but noise patterns created for strike slip faults were slightly 

different. 

          Disloc3 also enabled us to model our area of interest. A synthetic interferogram 

was created by modeling the cataloged CGS fault system in our study area and their 

triggered motions during the El Mayor-Cucapah earthquake. This model also included 

simulated motion along the main earthquake fault, which lay outside our area of study. 

The edge-detection code was able to identify all of the faults from the synthetic 

interferogram (Figure 19). 

As a proof of concept for the methodology in an earthquake situation a large 

earthquake was imagined occuring on the Yuha Fault, which is located within the 

control area. The area used for this was a UAVSAR strip of coseismic slip from the El 

Mayor Cucapah earthquake from which the Yuha Fault was discovered. The edge 

detection code was used to identify the fault to be used as a line source. The edge 

map was optimized to isolate the fault trace and georeferenced to the polygon area 

from which it was taken. Using E-DECIDER’s KML Generator service, a risk assessment 

map was generated for a 50 kilometer radius around the line source creating a map of 

infrastructure that was at potential risk for damage from the earthquake displacement 

(Figure 20). This would not apply to the UAVSAR image collection or subsequent data 

processing necessary to reach this step in the hazard response process. Data collection 

and processing are the two most time consuming portions of the process due to the 

logistics of reaching the UAVSAR plane, the time it takes to gather the data, transport it, 

and perform numerous processing steps on a large body of data. However, it confirms 

that this methodology can be used to identify movement along secondary faults in an 

active hazard area and identify infrastructure at risk of damage from secondary fault 

movement using UAVSAR data. 
 

Errors & Uncertainty: 
Uncertainty in detecting a fault lies partially with the inability to know whether the 

entire length of the fault is being detected from the edge map alone. A fair amount of 

confidence can be applied to the edge map when georeferenced and compared to 

the area of the InSAR from which it was taken. In this way a visual analysis can be used 

to determine whether the code is detecting all of the motion that is visible within the 

interferogram. However, that does not necessarily mean that deformation occurring 

along the entire length of the fault has been revealed by the InSAR.  It also needs to be 

determined what size fault displacements are filtered out in relation to threshold levels--

then it can be stated with confidence that the edge code detected faults with 

displacement greater than some value. This would require a large sample size of 

UAVSAR images of a range of faults of varying displacement values to establish a 

correlation curve. 

An additional uncertainty is related to fault strike of strike-slip faults. If the fault lies 

perpendicular to the LOS, the strike-slip motion will not appear in the interferogram. 

Thus, to confidently detect all motion, 2 interferograms covering the same area but with 

perpendicular LOS should be created. 

There are a regular set of noise sources which it has been difficult to remove. 

These include rivers, stream beds, roads, and agricultural areas especially. In the case 

of agricultural areas, they have often been left out entirely at the processing stage; 

however, this creates a barrier to fault detection in these areas. This has been revealed 
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in an agricultural area in which fault movement occurred during the El Mayor Cucapah 

earthquake, but the fault itself is difficult to distinguish due to the noise created by the 

agricultural zones. The noise is a result of the feature having data values above the 

upper threshold of the algorithm and in most cases higher than the values of the faults. 

For this reason, it has been suggested that a third threshold be added to the fault 

detection algorithm to stop edge detection above a certain threshold value to create 

a window in which faults would be preferentially detected. 

 Another source of error that was unexpected was that created by extensive 

data dropout. Data dropout in some cases occurs along the faults, which has led to 

inability of the detection algorithm to see the fault well or at all some areas. The result is 

generally noisy when distinguishable or segmented.  This may be considered one 

drawback to this application of edge detection; however, it is only applicable to a 

small number of cases. 

 

Future Work: 
The fault edge-detection algorithm can be further improved by integrating a slip 

calculation feature that measures the slip corresponding to the InSAR image time 

period. Furthermore, the fault detection algorithm usage can be expanded by having it 

made compatible with all InSAR data, not just UAVSAR data. 

 Since the modeling tool is not dependent on the occurrence of an event, it 

would be interesting to apply this method to earthquake predictions. One could model 

these predicted scenarios for a range of parameters on known faults creating synthetic 

interferogram images. The risk assessment tools and techniques could then be 

employed to project damage scenarios much like the exercises that have been 

completed by this projects partner organizations.  

The fault detection algorithm can be further improved by integrating a slip 

calculation feature that measures the slip corresponding to the interferogram time 

period. This would enable the creation of tilt/deformation maps from the UAVSAR data 

itself. This would thereby streamline the number of resources needed to create 

tilt/deformation maps, risk assessment maps, and fault edge detection maps. 

Furthermore, the fault detection algorithm can expand its usage by having it be 

compatible with all radar interferogram data, not just UAVSAR data. 

 

Conclusions  
 UAVSAR and other Earth Observations Systems are powerful tools for observing 

and understanding earthquake systems. The implementation of these tools has great 

potential for earthquake response and earthquake hazard mitigation to infrastructure 

and property in the densely populated state of California. 

The edge-detection algorithm can reliably detect faults with earthquake-rupture 

or earthquake-triggered movement in UAVSAR-derived InSAR data; however, creeping 

faults cannot be detected. Further refinement to reduce the noise will be necessary for 

full automation of this process.  

Agencies and researchers can use the detected faults to develop more 

complete models, simulations, and maps that increase understanding of earthquakes. 

In turn, an improved understanding of earthquakes along with the detection algorithm 

to identify fault motion will improve the effectiveness with which first responders and 

disaster managers can react to an earthquake. This will lead to more complete 
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methods being used for earthquake hazard assessment, mitigation, response, and 

recovery. A better understanding of these fault systems will ultimately help alleviate the 

ever-present earthquake risks and hazards for the millions of California residents. 
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Appendices 
 

Figure 5. InSAR of the primary 

study area of PolySel2 polygon 

within coseismic InSAR image 

taken of the El Mayor Cucapah 

Earthquake in 2010. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Edge map created with 

elevated high threshold setting in 

PolySel area and InSAR of 

coseismic slip from the El Mayor 

Cucapah earthquake. 
 
 

 

 

 

 

 

 

 

 

Figure 7. Edge map created 

with elevated low threshold 

ratio setting in PolySel area and 

InSAR of coseismc slip from the 

El Mayor Cucapah Earthquake. 
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Figure 8. Edge map image 

created from polygon PolySel2 

and interferogram of coseismic 

slip following the El Mayor 

Cucapah earthquake.  
 

 

 

 

 

 

 

 

 

 

Figure 9. Edge map with 

increased smoothing coefficient. 

PolySel2 area and InSAR of 

coseismic slip following the El 

Mayor Cucapah earthquake. 
 

 

 

 

 

 

 

 

 

 

Figure 10. Edge map with 

aperture increased to value 7. 

Produced from PolySel2 and 

InSAR of coseismic slip from the 

El Mayor Cucapah earthquake. 
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Figure 11. Edge map of the 

PolySel area and InSAR of 

coseismic slip from the El Mayor 

Cucapah earthquake with 

optimized parameters: aperture 

5, smoothing coefficient 4, high 

threshold 18, low threshold 65% of 

high threshold.  

 

 

 

 

 

 

 

 

Figure 12. Image created by the 

Logarithm of the Magnitude of 

the Gradient of the Phase from 

InSAR data. Created by the edge 

detection algorithm from PolySel2 

polygon and InSAR image of 

coseismic slip following the El 

Mayor Cucapah Earthquake. 
 

 
 
 
 
 

 
Figure 13. InSAR of creeping 

portion of the San Andreas Fault. 

White portion indicates borders of 

polygon area used for 

processing, it also serves to 

accentuate extent of data 

dropout in the image. 
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Figure 14. (Left) Edge map processed with default algorithm settings. Edges difficult to see, but 

the fault that was clearly visible in the InSAR is difficult to find. (Right) Edge map created with 

elevated upper threshold and smoothing coefficient to bring out the fault trace. Instead, what’s 

left is large portions of noise and evidence of the data dropout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Example synthetic InSAR created in Disloc3 elastic forward model. 

Image taken in Disloc Portal.  
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Figure 16. Synthetic InSAR created in Disloc for an array of faults used 

to test the effects of displacement values on edge detection 

algorithm.  

 

 
Figure 17. Edge map created from array of faults modeled in Disloc 

to test effects of displacement values on edge detection algorithm.  

 

 
Figure 18. Pair of images showing the effects of variations in strike 

(orientation) on the edge detection algorithm. The faults in this image 

were modeled in Disloc sharing the same displacement values and 

geometries but different strikes. 
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Figure 19. The top image shows the synthetic interferograms model 

created by Disloc for our area of study. The bottom image is the edge-

detection code results for the synthetic interferogram.  
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Figure 20. This image, taken in Google Earth, is an example of a finite fault event occurring on 

the Yuha Fault in the Imperial Valley of Southern California. E-DECIDER’s KML generation service 

was used to create the risk assessment map and utilities overlay. 
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Figure 21. Flowchart of steps taken to optimize an edge map from an area of InSAR data, 

georeference the edge map, and produce a risk assessment map using E-DECIDER’s KML 

generator service.  


