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1. Abstract
The City of Yonkers, New York, is located directly north of the Bronx in Westchester County and currently hosts a population of nearly 200,000. In response to increasing hot-weather episodes, the risk of heat-related illnesses and mortality is disproportionately affecting neighborhoods in Yonkers historically subjected to race-based housing segregation. NASA DEVELOP collaborated with Groundwork Hudson Valley to determine regions within Yonkers that are experiencing the most intense urban heat island effects, identify and rank sociodemographic and environmental determinants of increasing community-level vulnerability, map these vulnerabilities as a combined vulnerability index, complete a proximity analysis of walkability to local cooling centers and health facility locations, and model potential cooling strategies. The study area consisted of Yonkers, NY and the analyses used data from 2015-2020 (June through August). The project utilized NASA Earth observation products including Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). We assessed the benefits of different heat-mitigation scenarios by utilizing the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model. Results from these analyses can be used by Groundwork Hudson Valley, supporting the New York State’s Climate Safe Communities Certifiable Planning Actions, expanding knowledge on the relationship between historic redlining and environmental equity, and informing their Climate Safe Neighborhoods initiative to identify and prioritize mitigation efforts to abate the worst impacts of extreme heat. 

Key Terms
[bookmark: _Toc334198720]UHI, heat mitigation, InVEST urban cooling model, Landsat 8 TIRS, ECOSTRESS, social vulnerability.

2. Introduction
[bookmark: _Toc334198721]2.1 Background Information
Global temperatures have risen approximately 1.0 °C since the pre-industrial period and continue to rise (Schneider et al., 2007). At the current rate, the global average will increase an additional 0.5 °C sometime between 2030 and 2052 (Payne, 2018). This increase in heat is particularly prominent in urban areas due to the urban heat island (UHI) effect. The UHI effect is the elevated temperature of urban areas relative to the surrounding rural countryside; largely due to greater proportions of absorbed and stored solar energy by artificial materials (Phelan et al., 2015). As urban populations grow larger, UHI effects are magnified, resulting in a compounding of harmful impacts on the environment, infrastructure, and public health of the city.

Inner-city spatial heat variability occurs on account of neighborhood differences in tree canopy cover, impervious surface coverage, land surface temperature (LST), and factors that can be linked to social determinants (Groundwork Hudson Valley, 2021; Hondula et al., 2015). Socioeconomic inequalities increase vulnerability to the harmful effects of increasing heat (Olsson et al., 2014). These impacts place additional stressors on households and neighborhoods. Poverty, aging, language barriers, and race/ethnicity correlate with both the high risk of poor health outcomes and locations of UHI intensification (Aminipouri, 2019; Hsu et al., 2021). These correlations can be seen throughout New York State (Rosenthal et al., 2014) and have the greatest impact in areas with compounding vulnerabilities. Though heat vulnerability may differ due to individual characteristics, an individual’s response to heat and the adaptive capacity of a community is highly influenced by socioeconomic, environmental, and behavioral attributes (Nayak et al., 2018). 

Understanding the components and distribution of heat vulnerability within the city can guide adaptation strategies for communities. Urban design interventions like increased tree cover and reflectivity, are major strategies that should be evaluated. Since in-situ measurements of environmental parameters are constrained by measurement station locations, researchers often use remotely sensed LST data as a proxy for air temperature to assess heat vulnerability and UHI effects across a region (Wang et al., 2016). Past NASA DEVELOP projects, including San Diego Urban Development (Garcia et al., 2021) and Sacramento Urban Development (Alvararez et al., 2020), applied Earth observations to create maps of urban heat and heat risk. These projects used the Natural Capital Project’s Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Urban Cooling Model (UCM) to evaluate possible heat mitigation scenarios.

2.2 Study Area
The City of Yonkers, NY (Figure 1) is an inner suburb of New York City, located along the Hudson River in Westchester County, just north of the Bronx. Yonkers is the fourth largest city in the New York State and as of 2021, home to a population of roughly 200,000 residents, 44.2% non-white and 34.7% Hispanic. Due to the rapid acceleration of climate change, cities like Yonkers will increasingly experience more frequent, intense, and lengthier heatwaves (Aminipouri et al., 2016). Communities within Yonkers and beyond experience the effects of climate change inequitably. This arises out of the relationship between historical housing dynamics and the spatial variability of current and predicted UHI impacts. To our knowledge, there has been no study conducted previously in Yonkers that mapped heat vulnerability in combination with a wide range of environmental and demographic attributes or evaluated possible heat-mitigation strategies for the city. 
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Figure 1. Study area map showing Yonkers in relation to the state of New York.
  
2.3 Project Partners & Objectives
Groundwork USA is comprised of a network of local organizations empowering people and guiding the transformation of low-resource communities to promote equity, leadership, and economic opportunity. As a subsection of this non-profit, Groundwork Hudson Valley (HV) strives to influence sustainable environmental change within urban environments, especially those tied to and surrounding Yonkers, NY. The summer 2021 NASA DEVELOP Yonkers Urban Development team partnered with Groundwork USA and Groundwork HV to add remote sensing capacities to their studies of UHI in Yonkers. Our team utilized NASA Earth observations from Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Spectrometer (TIRS), and the International Space Station (ISS) Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) to estimate UHI magnitude by studying daytime and nighttime LST. The DEVELOP team combined environmental data from NASA Earth observations with socioeconomic and demographic data from the U.S. Census and heat outcomes data from the Centers for Disease Control (CDC) to address community-level urban heat and environmental inequity in Yonkers, NY, during the summer months (June through August) of 2015-2020. By integrating Earth observations, Groundwork can use the InVEST UCM to model the cooling effects of specific interventions and compare their efficiencies. The outcome of this partnership will help bolster environmental awareness and urban heat mitigation. Groundwork HV hopes these results can inform city planners in the prioritization of cooling interventions and understanding of risk.

3. Methodology

3.1 Data Acquisition 
Open-source data were used for most of this project. Tables A1, A2 and A3 list Earth observations imagery, ancillary datasets, and data for selected socio-demographic and health variables, respectively. To meet our first objective of identifying the regions affected by the most intense UHI effects, we thoroughly analyzed the LST images derived within the Yonkers city boundary during the summer months of 2015-2020. Since the city’s temperature remains below 15°C in early May and declines before the end of September, the team used temperature data from June through August to isolate high UHI intensity during the summer months. Our method of estimating LST is based on retrieving the visible and short-wave infrared bands from Landsat 8 OLI and the thermal infrared channels from TIRS. To process the bands, LANDSAT/LC08/C01/T1_SR Landsat 8 Surface Reflectance Tier 1 image collection was directly loaded for analysis into the Google Earth Engine (GEE) platform’s code interface through paths provided in the Earth Engine Data Catalog. The team requested ISS-ECOSTRESS nighttime LST (ECO2LSTE.001) and cloud masked (ECO2CLD.001) Level 2 data for the years of 2018 – 2020 from the NASA Land Processes Distributed Active Archives Center (LP DAAC) using the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) tool. Similarly, Level 3 Evapotranspiration (PT_JPL) products (daily ET in W/m2) from ISS-ECOSTRESS (ECO3ETPTJPL Version 1 Level 3) were also requested through NASA AppEEARS.

The calculation of LST values was made simple by a GEE algorithm developed at the University of Lisbon and published in the open access Remote Sensing Journal in 2020. This open-source code, created by Ermida et al. (2020) makes use of GEE catalog data from the NASA LP DAAC’s Advanced Spaceborne Thermal Emission and Reflection Radiometer 100-meter Global Emissivity Database (ASTER-GED) and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction/National Center for Atmospheric Research’s (NCEP/NCAR) Water Vapor Reanalysis. LST was calibrated from optical scenes from all Landsat missions available in GEE using this code. It applies corrections by matching pixels with temporally corresponding GEE data.

Air temperature measurements were downloaded from the National Integrated Heat Health Information System Climate Adaptation Planning Analytics (NIHHIS-CAPA) Urban Heat Watch project, which used Yonkers as a campaign city. These in-situ measurements of 2 m height air temperatures were captured by community volunteers who made sets of traverses around the city at three times of day (6:00 AM, 3:00 PM, and 8:00 PM) in summer 2019. Air temperature for areas outside of Yonkers, for comparison, was summoned into the GEE workspace from the NASA Earth Exchange Downscaled Climate Projections (NEX_DCP30). Humidity data, an input for the InVEST Urban Cooling Model heat reduction valuation, were collected over Yonkers’ recent history from the NOAA NCEP/NCAR Global Forecasting System (GFS) and the Gridded Surface Meteorological (GRIDMET) datasets.

National Land Cover Database (NLCD) products, including land use/land cover (LULC) and urban imperviousness, were inputs for analysis. Recently released 2019 NLCD LULC data products from the U.S. Geological Survey (USGS) were collected from the Multi-Resolution Land Characteristics (MRLC) Consortium website. The shade of each LULC class was calculated in GEE using the percentage of tree canopy cover from the University of Maryland Hansen Global Forest Change at 1 arc second resolution (approximately 30 meters). Elevation from a digital elevation model (DEM) of 30-meter resolution, available from USGS National Elevation Dataset (NED), was imported into GEE. The team calculated building intensity from building footprints and zoning districts acquired from the Westchester County GIS Hub to use as input for InVEST. The number of floors for each building in the dataset was derived using the reported base elevation of each structure along with average story heights of various building types. We used information on zoning districts of Yonkers to categorize the types of building for the purpose of energy saving calculations in InVEST.

We developed a heat risk index incorporating medical and social determinants of health that increase heat sensitivity and limit the community’s adaptive capacity. Based on a thorough literature review, we selected 16 socio-demographic parameters (Nayak et al., 2018; Wiesböck et al., 2016; Wong et al., 2017) and 6 public health conditions (Niu et al., 2021; Watts et al., 2018) to use as inputs in vulnerability mapping (Table A3). Sociodemographic data by census tract came from 5-year estimates for 2015-2019 and were prepared by the American Communities Survey (ACS), a program of the U.S. Census Bureau. The variables of health conditions at tract granularity were collected from the website CDC PLACES: Local Data for Better Health.
3.2 Data Processing

3.2.1 Daytime Land Surface Temperature (LST)
To derive daytime LST in raster format, the team manipulated thermal imagery from all Landsat series. Open-source code from Ermida et al. (2020) was used in GEE to apply the Statistical Mono-Window Algorithm (SMW), developed by the Climate Monitoring Satellite Application Facility (CM-SAF). The processing chain in GEE involves the users providing a date range, selecting the desired Landsat mission, selecting an area of interest, and an option to apply Normalized Difference Vegetation Index (NDVI)-based correction to emissivity. The algorithm automatically applies corrections to Landsat scenes by referencing temporally corresponding GEE data. To account for atmospheric interference on TIRS observations, values of Total Column Water Vapor (TCWV) from the closest NCEP/NCAR reanalysis times were selected for each TOA BT images to be interpolated to the Landsat observation time. To account for vegetative effects on emissivity, NDVI rasters calculated from the SR data and converted to Fractional Vegetation (FV) were matched to a database of regional profiles. All corresponding images of Top of Atmosphere Brightness Temperature (TOA BT) and Surface Reflectance (SR) in Yonkers were retrieved from Landsats 4, 5, 7, and 8 during the summer months and cloud-masked using their quality assessment bands. The algorithm uses data from TIRS Band 10 (10.60 - 11.19 µm wavelengths, collected at 100-meter resolution and resampled to 30m).  Finally, the SMW algorithm was applied to both TOA BT and SR rasters to compute daytime LST in °C, calibrated by actual surface emissivity and atmospheric conditions, where the algorithm coefficients in the LST calculation equation are determined based on linear regressions performed for 10 TCWV classes. After Yonkers Landsat 8 scenes were filtered for summer 2020, processed using the SMW algorithm and corrections, and clouds and shadows were masked out of all images, the average was found for each pixel. For comparison with baseline temperatures, LST was also evaluated for reference regions. Our process of appropriately selecting these reference regions based on environmental similarities, is outlined in Appendix B1. Other processing methods for Landsat LST were sought and tested; these differences are discussed in Appendix B2.  

3.2.2 Nighttime Land Surface Temperature (LST)
The team examined the extent of day and night LST variation, which can potentially detect regions of daily heat built-up. Hence, the team collected and processed LST images from ECOSTRESS. Using R, we filtered nighttime images for 22:00-5:00 Eastern Daylight Time (EDT). We further filtered the images by masking clouds and cloud shadows with ECOSTRESS SDS CloudMask. The team observed discrepancies between published and actual locations of the ECOSTRESS-derived LST rasters, especially in the domain of Yonkers. We manually georeferenced individual rasters, shifting an average of 1168 meters based on the known boundaries such as lakes, ponds, and rivers. The final collection included 11 images for Yonkers and 12 images for reference sites, excluding images with inaccurate or unreasonable LST values. Finally, the team calculated a median image over the study period representing a nighttime LST scenario for the city of Yonkers and the reference sites located in Appendix B1. 

3.2.4 Evapotranspiration (ET)
Daily evapotranspiration images (Daily ET in W/m2) were manually filtered for reliable ET values in Esri ArcGIS Pro. The filtering criteria for the daily ET images included having reasonable ET values, no linear artifacts, and the highest coverage of the study area with minimum data voids. The team calculated average ET from the remaining Daily ET images by using the ArcGIS Pro Cell Statistics tool. The InVEST model requires evapotranspiration in units of mm/day.  Hence, the unit of the final average raster was converted from W/m2 to mm/day using Equation 1 (below), where ET refers to evapotranspiration. Due to water masking, ECOSTRESS Daily ET data have missing values (no data) for water bodies within the city. However, the InVEST model required a continuous evapotranspiration raster covering the entire study area. The team replaced all no data water body pixels with 5.4 mm/day2, corresponding with the lower spectrum of the mean evapotranspiration raster as water bodies, in general, have lower evapotranspiration values than vegetation.

                      ET [mm day-2] = ET [W m-2] * 0.0864 MJ m-2 day-1 * 0.408 mm day-1		(1)	

3.2.5 Land Use/Land Cover (LULC)
The LULC raster, which is critical to calculating biophysical table parameters in the InVEST model, determined the spatial resolution of the output files. With a pre-classified 30-meter resolution LULC file, all result outputs from the InVEST model were generated in 30-meter resolution and cropped to the Yonkers city boundary (Figure 1). The team calculated albedo, shade, and building intensity for each unique LULC class over the total class area. Figure A2 shows that the land cover of the city experienced the substantial urban increase (1540 pixels, 2.64% of the city area) followed by some increase in water body (0.146%) and forest areas (0.11%) during 2000‒2019. With most change occurring over urban areas, the city has experienced frequent heat episodes due to an increase in impervious surfaces, which require proper heat mitigation planning in the coming years.

3.2.6 Albedo
Albedo, a surface property defined by the proportion of incident light reflected by a surface, determines the rate of solar radiations absorption (Taha, 1997) and directly relates to the UHI effects in the built environment. Albedo is a unitless measure ranging from 0 to 1. The cloud-masked Landsat 8 surface reflectance Tier 1 collection was utilized in the albedo calculation using Equation 2 with empirically derived weighting coefficients for the OLI bands (Tasumi et al., 2008). Mean albedo values for each pixel within the city were derived during the summer months (June-August) of 2015-2020. Albedo is an important variable in the InVEST model biophysical table, which requires albedo values for each LULC class. With the ArcGIS Pro Zonal Statistics tool, we overlaid the raster of mean albedo with the LULC layer to calculate mean albedo values representative of each unique LULC class.

      Albedo = Blue*0.246 + Green*0.146 + Red*0.191 + NIR*0.304 + SWIR*0.105 + SWIR2*0.008      (2) 

3.2.7. Shade
Another aspect of urban heat that varies according to LULC class is the shade factor, which represents the proportion of shared areas cast by tree canopy over 2 m in height associated with each LULC class. Tree shading reduces the solar radiation received and absorbed by urban surfaces and is, therefore, a major factor in the spatial divergence of UHI. It is assumed that each landcover type has a rather uniform rate of tree cover across Yonkers, which allows for the extrapolation of shade from LULC maps. Shade values for each class, applied through the InVEST model biophysical table, were calculated for the NLCD’s 2019 LULC classes. In GEE, 2019 tree canopy cover was derived from the Hansen GFW tree cover and tree loss data. Tree cover pixels were separated according to LULC classes, and the tree cover percentages for each class of pixels were averaged to derive a mean shade corresponding to each landcover type. These outcomes were compared with class shade averages from the NLCD 2016 Tree Cover layer, registered with the 2016 NLCD LULC classes map, which classified less tree canopy in vegetated areas and more canopy in built-up areas (Table A4).

3.2.8 Building Intensity
Building Intensity (BI), one of the input parameters of the biophysical table in the InVEST model, can predict nighttime temperature within the built environment since heat stored by buildings during daytime is released to the atmosphere at night. The vertical dimension of a city can be captured through this parameter, which is a unitless measure and a product of the cumulative floor area of buildings over the total area of an LULC class. The team calculated BI using Equation 3, where BI is building intensity for each LULC class, BA is building rooftop area for each LULC class [m2], F is the number of floors [unitless] of individual buildings, and LA is the total area of each LULC class [m2]. As an input to the model, the variable needed to be provided for each unique LULC class in a normalized value range between 0 and 1.

BI [unitless] = Σ(BA × F) / LA					(3)

The building footprint and height data collected from Westchester County GISHub was processed to compute BI. The team first determined an average ceiling height for two major building classes (residential and commercial), sincie the dataset provided provided total floor height, but we needed to assume an average ceiling height based on building types. A 10 ft height was determined to be an average ceiling height for residential buildings and 12 ft was determined for commercial buildings. Later, the individual building heights were divided by ceiling height to estimate the individual building floor numbers. The team then calculated the footprint area (m2) of each building using the Calculate Geometry tool in ArcGIS Pro, which was multiplied by the floor number to derive cumulative floor area for each building. The team performed a spatial join between the building shapefile and the NLCD LULC raster to link the LULC information with individual buildings. Using the new shapefile, a cumulative building floor area was computed for each LULC class to be divided by the total area of each class. 

3.2.9 Energy Consumption and Cost
InVEST evaluates ecosystem services under possible heat mitigation scenarios in monetary terms. It evaluates avoided energy consumption based on local heat mitigation and UHI Magnitude. The calculation of energy savings requires knowing the average energy consumption, average electricity cost, and desired relative humidity for each building type. The team used data on energy consumption from a recently published study by Howard et al. (2012), which provides electricity consumption and percent of electricity spent on cooling for each category of buildings in New York City. Average electricity cost rates for residential, commercial, and industrial uses in U.S. Dollars/kWh came from the National Renewable Energy Laboratory, compiled by Electricity Local. Relative humidity per category was estimated from internet searches of average indoor climates. Using data from the Westchester County GISHub, the team performed a spatial join between 2018 building footprints and a 2020 Yonkers zonal planning map to extract the zoning information for each building and predict the building type of each structure. Table A5, which InVEST used to estimate energy savings, shows how the city’s 21 zoning types were aggregated into 8 building types. These types were chosen based on the available categories in the Howard et al. (2012) study. We manually geolocated the buildings associated with health infrastructure and assigned them to Type 8 to make energy consumption data more specific. 

InVEST requires this consumption rate to be in units of kWh/°C/m2 of footprint area, but the Howard et al. (2012) rates are in annual kWh/m2 of floor area. For conversion, we multiplied rates from literature by average number of floors per building (from the Westchester County GISHub). Translating this rate into the per degree increase unit that InVEST required dividing the annual amount by Yonkers’ degree days in 2020. Calculated by degreedays.net based on the nearby KHPN (White Plains, 73.71W, 41.07N) weather station, cooling degree days are the temperature differences between 20°C (68°F) and higher daily averages, summed across the year. Dividing annual kWh/m2 of footprint area by number degree days in 2020 gave energy consumption in units of kWh/each 1°C increase/ m2 of footprint area. See Table A5 for the determined energy consumption, electricity cost, and relative humidity of each building type.

3.2.10 Data Compilation for Modeling Heat Risk
Initially, the team attempted to join 2019 ACS data and 2020 CDC health data with the 2019 census tract boundaries, which resulted in missing tracts data due to changes in a few census tracts from 2010. However, the team was successful in collecting all tract data in a R script using the ‘tidycensus’ package. The compiled dataset of demographic and health data were used for identifying social and health vulnerability. Moreover, we converted 2015-2020 mean LST raster to a point shapefile to conduct a spatial join with other environmental variables such as elevation, NDVI, albedo, fractional vegetation, and % imperviousness in order to preserve data in every pixel. The compiled environmental data from the point shapefile was later used for LST exposure analysis. We applied the results from both vulnerability and exposure analysis in the calculation of heat risk by census block level. 

3.2.11 Organizing InVEST Input Data and Preparing Heat Mitigation Scenarios
The InVEST UCM requires files for input variables, coefficients for cooling capacity calculations, and decisions about outputs and valuations. All possible valuation options were applied. Default weighting (Albedo: 0.6, Shade: 0.2, Evapotranspiration: 0.2) was used for cooling capacity index calculation. Coefficients for climatic parameters ‘green area maximum cooling distance’ and ‘air temperature maximum blending distance’ were estimated as 500 and 750 m, respectively. These estimates for Yonkers were based on discussions posted on the Natural Capital Project Community Forum, with information contributed by InVEST developers. Day and night relative humidity (50.61% and 76.83% respectively) were derived from the GRIDMET dataset maximum and minimum bands (and confirmed against the NOAA GFS dataset) in GEE, and averaged across Yonkers for summer 2020.

Landcover, evapotranspiration, city boundary, biophysical table of shade, albedo, greenspace designation per landcover type, building footprints, and energy consumption data files were selected as input data through the UCM. For proper usage, the UCM should be conducted for daytime heat mitigation according the ‘Weighted Factors’ method of the ‘Cooling Capacity Calculation,’ as well as nighttime heat mitigation using the ‘Building Intensity’ method. For situational models (possible interventions, different cooling parameters, or future timelines), the UCM was iterated, changing one input variable file at a time. See Appendix B3 for all of the details regarding the execution of InVEST, as well as the processing and simple calculations which are internal to the model, and to understand the interaction of inputs and outputs. The team was advised by Groundwork HV on potential types of interventions, as well as potential sites of interest. These locations, as well as sites identified as vulnerable through overlay mapping, were used to implement changes to input layers reflecting physical attributes of cooling interventions. See Appendix B4 for details about the conception and input data creation for these heat mitigation scenarios.

3.3 Data Analysis
3.3.1 Heat Risk Index
We proposed a method that quantifies heat risk by combining both exposure risk and underlying vulnerability due to social and health inequality within the city. At first, the team identified vulnerability by merging all 16 socio-demographic and 6 health indicator factors at census tract resolution with a Principal Component Analysis (PCA), which helps to interpret variables by reducing the dimensionality of large datasets. We used the resulting principal components to estimate the vulnerability index for each census tract.

Then, we calculated exposure risk to LST in terms of relevant environmental parameters using Ordinary Least Squares (OLS) to understand the degree of correlation between each environmental variable and LST. Some dependent variables were disregarded after repeated multicollinearity tests. Data collected in a point shapefile mentioned in section 3.2.10 were used for regression analysis using an R script. Later, the team conducted a Moran’s I spatial auto-correlation test to determine if a spatial regression model is necessary to improve the results. We then ran a global spatial model called Spatial Autoregression (SAR) that can describe the relationship between independent (LST) and dependent variables by considering spatial impact. The global impact values resulting from SAR analysis were used as index weights corresponding to anomalies in each variable, relative to the variable’s statistical significance. 

The final exposure index calculated for all pixels were mapped at the native resolution of LST rasters and their mean values were aggregated at census block level using the ‘Summary Within’ tool in ArcGIS Pro. We overlaid this layer with the previously calculated social and health vulnerability index to finally estimate the ‘Heat Risk’ index using Equation 4:

                               Heat Risk = Exposure Risk * Social and Health Vulnerability                                   (4)

3.2.3 Proximity Analysis
The team completed a proximity analysis to identify areas of walkability around Yonkers’ designated cooling centers and identify neighborhoods in highest need of targeted interventions. Cooling centers were geocoded, and highways were excluded from a network of Yonkers streets. The ArcGIS Pro Network Analysis tool was used to create a 0.25 mile and 0.5-mile buffer around each cooling center. The US. Dept. of Transportation designates these as standard distances that commuters are willing to walk (U.S. Department of Transportation, 2013). 

Thiessen polygons were generated around each cooling center to establish a calculated service area of all locations closest to a given subject center. Spatial joins were made with census block-level population data from the ACS and the heat exposure index derived previously (section 3.3.1).  Census blocks were intersected with service area boundaries and population totals were calculated congruent with areal proportions for each divided block group. Block groups with a heat exposure index >0.65 were selected by areal proportions. These high-risk groups were aggregated for each cooling center service area to determine the total population affected by high heat exposure who are outside the walkable zone. 

3.2.4 InVEST Urban Cooling
As directed by InVEST documentation, the surface city-wide UHI magnitude, used to calibrate heat mitigation, was calculated as the study region maximum temperature minus a reference temperature. We used the difference between the 95th percentile of the observed mean temperature across Yonkers (46.5k km2) instead of the maximum, to account for measurement anomalies, and the average temperature across all reference areas (39.4k km2) as described in Appendix B1. The 98 total scenarios modeled in InVEST (and detailed in Appendix B4),  for both day and night, were created by manipulating input files. The UCM computed impacts of the UHI effect in terms of heat mitigation, worker productivity lost, and energy costs. 

Intermediate layers were analyzed to better understand calculations internal to InVEST. Their varying effects were compared by visual inspection of some outputs before all outputs were summarized across modeled regions. This was completed by averaging the heat mitigation index, air temperature, and productivity loss from ‘heavy intensity’ work (there was 0% loss of ‘light intensity’ work in almost all simulations) and summing avoided energy savings for all buildings. Day and night summer outputs were averaged to create seasonal totals. These total outputs were normalized to make the differences between scenarios and interventions easier to understand. In all cases encompassing the entire city, the difference from the base scenario was calculated for total energy savings and average heat mitigation, temperature, and heavy work loss. In the separation of single neighborhoods, the avoided energy spending was divided by neighborhood population to understand the distribution of energy savings received per capita and by area. The proportional difference between outputs from high and extra-high shade and albedo scenarios was compared by dividing differences from the base scenario by percent shade or albedo change, to understand the relative boost from the two factors at different magnitudes.  

Different concentrations of shade and albedo increases were understood in terms of the area percentage, in the two study extents, required to change. For albedo, this equated to 16% of lots or 38% of roofs across Yonkers, or 90% of lots and all buildings in the focal regions. Shade increases spanned 7% of total Yonkers area or 37.5% of the focal area. For scenarios comparing the neighborhood location of added shade and albedo or the addition of shade and albedo in separate landcover types, differences from base scenarios were divided by the amount of area impacted by an intervention. This allowed us to understand relative efficiency of interventions proportional to implied costs. Where differences were adjusted to the area impacted, per-square meter values were made more conceivable by multiplying by 100. Change in outputs per-100 square meters is a better unit for the urban landscape scale, and 100 square meters is roughly equivalent to the shade received by one average 10-year-old Yonkers tree, or the reflectivity added from retrofitting one average building, one and a half average single-family residential buildings, or a 20-by-20-meter plot of dark pavement. This allows Groundwork to more easily interpret and effectively communicate the results of modeling interventions in InVEST.

[bookmark: _Toc334198730]4. Results & Discussion

4.1 Analysis of Results
[bookmark: _Toc334198734]4.1.1 Urban Heat Island Intensity and Spatiality
Heat has several components, including surface, air, and diurnal patterns, which were mapped to understand spatial nuances of urban heat in Yonkers. All raster calculations were conducted using GEE functions. LST for daytime and nighttime, from Landsat and ECOSTRESS imagery respectively, were summarized by median value for each census block (Figure C1). Rasters of air temperature, produced by the Urban Heat Watch project for morning, afternoon, and night in August 2019, were also summarized as median values by census block (Figure C2). The night and day versions of maps were compared to generate maps of diurnal change in air and surface temperature (Figure C3). 

The InVEST method quantifies the UHI effect in terms of difference from baseline, rural temperatures. Air UHI Magnitudes used baseline air temperatures derived from the NEX-DCP30 dataset’s summer averages over the reference regions (from Appendix B1) in the monthly-mean maximum air temperature monthly-mean minimum air temperature bands. 95th percentile of observed day and night temperature used Yonkers air temperature maps. A Surface UHI Magnitude was derived for each year over the entire period of Landsat summer data availability in GEE. Used in InVEST, Baseline air temperatures and UHI Magnitudes were 26.771°C and 4.83°C, respectively, for the daytime and 17.159°C and 6.79°C for the nighttime for summer 2020. These UHI Magnitudes rasters were subtracted from corresponding night and day heat maps, to produce maps of relative UHI effect across Yonkers (Figure C4). 

LST statistics over both regions were plotted as a timeseries from 1984 to 2020. These statistics allowed us to map projected air and surface temperatures in 2040, which was the pixel temperature plus the 20-year projected temperature, calculated as the linear temperature trend, plus the locational anomality projected by the NEX Downscaled Climate Projections. Alternate inputs for InVEST approximating future conditions impacted by further climate change, which will likely occur within the timeframe of Groundwork HV’s current planning efforts, were projected to a future point in time using Landsat heat trends. A 0.5°C increase is expected by 2028 and another 2°C increase is likely by 2050. A final set of heat maps was created simulating air and surface heat in 2040 (Figure C5), based on UHI Magnitudes projected by LST timeseries (Figure C6). A plot of general statistics from all the various heat maps are included in Figure C7.

4.1.2 Mapping Social and Health Vulnerability
To explain 22 social and health variables with a reduced number of independent components most impactful for heat vulnerability, a Principal Component Analysis (PCA) was conducted on the variables’ data collected for Yonkers’ census tracts. By combining a dataset of large input variables, PCA creates few independent components with most important information from the native variables. We scripted codes in R Studio to systematically conduct PCA analysis using ‘prcomp’ function under ‘stats’ (3.6.2) package, computing the individual components for each census tract and converting them into index values representing overall social and health vulnerability. Our analysis shows that the first 6 principal components can explain 42.3%, 15.2%, 8.88%, 7.69%, 4.6%, and 3.9% total variance respectively, as listed in Table C1. Therefore, the first 6 components cumulatively explain 82.5% of all data variance. The loadings (coefficients in linear combination predicting a variable by the standardized components) of individual variables resulted for each principal component can help to interpret variables with highest variance in each principal component. Since, the first principal component (PC1) has highest proportion to explain all variables, variables with highest loadings in PC1 explains majority of the variables. Population density, people under poverty and the health outcomes have higher loadings in PC1 as listed in Table. To calculate out vulnerability index, we averaged the values of first 6 components estimated for all datapoint and normalized in a scale of 0 to 1. Figure C8 shows a map of calculated social and health vulnerability index for all census tracts in Yonkers.

4.1.3 Heat Exposure and Heat Risk Index
As a measure of heat exposure, LST was used as proxy for in-situ air temperature to understand the relationships between LST and the related environmental parameters, including albedo, fractional vegetation, NDVI, percent imperviousness of pixels, and elevation. The primary OLS model resulted in the adjusted R-square value of 0.689 with significant (p-value< 0.05) F-value, implying that all selected environmental parameters significantly explain LST together. The coefficients of albedo (-2.24), elevation in meters (0.008119), and % imperviousness (0.055974) are statistically significant (p-value< 0.05). To explore the variables, we investigated pair-wise correlation among each explanatory factor (Figure C9). We observed percent imperviousness highly correlating with fractional vegetation and NDVI. NDVI also has high correlation with fractional vegetation since it is derived from NDVI. Hence, we performed a multicollinearity test using the ‘imcdiag’ function ‘mctest’ package in R, which provides individual diagnostics to check multicollinearity. The test on the primary OLS model detected collinearity issues for fractional vegetation, NDVI and percent imperviousness. Later, we refined the OLS model including only 3 explanatory variables (albedo, elevation, and percent imperviousness). 

The Moran’s I test resulted in a significant (p-value< 0.05) Moran’s I statistic, indicating spatially correlated residuals in the OLS model. Later, the team conducted Lagrange Multiplier diagnostics for spatial dependence in linear models, which reports that the spatial models (such as a spatial lag or spatial error model) can improve the results of our existing linear model. We finally selected the SAR model to understand both direct and indirect effects of the explanatory variables on LST. The SAR model with the same dependent variables produced a pseudo R2 value of 0.7257 calculated from an AIC of 3162. All explanatory variables including albedo (p < 0.034), elevation (p < 6.9e-10) and percent imperviousness (p < 2.2e-16) constitute a statistically significant correlation with LST, while percent imperviousness, with the lowest p-value, most significantly explains LST in the SAR model. We also see that LST is positively correlated with elevation and percent imperviousness and negatively correlated with albedo. The team also conducted an impact analysis on the SAR model result to see the direct, indirect, and global effects of each parameter coefficient. Table C2 lists the coefficient values of how each variable directly, indirectly, and globally affects LST. Albedo shows high negative impacts on LST, while percent imperviousness has the highest positive impact. Finally, we used the global impact coefficients to calculate the exposure risk mentioned in Equation 4 and normalized the values in a 0‒1 scale. Figure C10 shows a map of exposure risk calculated at the census block resolution using the global impact coefficients from the SAR model. We observed most census blocks with highest heat exposure risks fall in the neighborhood boundaries of Radford, Old 7th Ward, LaMartine Heights, Glenwood, Kimball, Beverly Crest, Ludlow Park, and Tibbetts Hills. Figure C11 shows a map of heat risk estimated for the census blocks of Yonkers which combines both exposure and underlying vulnerability in the city. Most census blocks with high heat risk index falls within the neighborhoods of Old 7th Ward, Radford, Glenwood, and Kimball.

4.1.4 Identification of UHI Hotspot Clusters
To locate census blocks that experience clustering of statistically high LST, we used the Getis-Ord Gi* hotspot analysis statistic. Our use and parameterization of this tool is outlined in Appendix B5. The output of the test returned z-score and p-values for individual block. The degree of spatial clustering is determined by the ranges of two output statistics: Z score (standard deviations) and p value (probability). The blocks with high positive z-scores with statistically significant p-value (<0.05) experienced most intense clustering of LST (hot-spot). These blocks are located within the neighborhoods of Radford, Kimball, Old 7th Ward and Glenwood (Figure C12), which also corresponds with our previously estimated heat risk map. All focal neighborhoods had positive clustering. Other blocks with high negative statistically significant z-scores are the regions of low LST clusters (cold-spot). We identified the most cold-spot blocks within the Park Hill, beach Hill, Sprain Lake Knolls, Sunnyside Park, Crestwood Lake and Woodstock Manor neighborhoods.

4.1.5. Proximity Analysis

The total population residing in each cooling center service area is seen on Figure C13. While some cooling center walkability buffers overlap with areas of high heat exposure, many are outside of easy walkability (Figure C14). Of the 23,604 residents living under high heat exposure risk near the Yonkers Riverfront Library cooling center, 19,002 of them live beyond walking distance. In total 59,612 Yonkers residents live under a high heat exposure risk with 46,321 living outside a walking distance to cooling centers (Figure C15). Locations for additional cooling interventions can be guided by the maps of high risk and low walkability provide by the team.

These estimates are predicated on assumptions about the population distribution within each block group. At this level, dividing the population by the areal portions of each intersected group is reasonable but a finer resolution at the block level would provide more certainty in the population estimates.  In addition the 0.65 risk level was selected by the team, but a different designation as ‘high’ could yield different results in the map. 

4.1.6 Evaluating Intervention Possibilities with InVEST
The summarized summer outputs from each heat mitigation scenario modeled in InVEST were compiled into tables and plotted against comparable scenarios, such as the effects of current cooling by neighborhood or the effects of shade and albedo increases happening in various landcover types. These differences in valuation are a result of various changes in the heat mitigation index, examples of which are shown in Figure C16. Appendix C shows many of the results from these iterations. Currently, the three focal neighborhoods have some of the lowest average (non-greenspace/water) cooling capacity (CCi) values (Figure C16a). However, they are not all the hottest or most burdensome for labor, likely due to the ‘greenspace effects’ of the Hudson River (Figures C16b, C16c). In terms of avoided energy spending, many neighborhoods with high energy savings (Figure C16d) are large but low-density, so they have low savings per square meter and high savings per person. Meanwhile, focus neighborhoods are high-density, reaping high avoided spending per meter, but high populations mean low avoided spending per resident (Figures C16e, C16f). 

Shade and albedo increase, when concentrated in focal neighborhoods rather than distributed across the city, produced additional cooling effects and saved additional money (Figures C17a, C17b).  When these neighborhoods were separately retrofitted with shade or with albedo, the total amount of change was often related to neighborhood size, with minor differences according to area proportions of footprints (Figures C18a, C18b). However, when relative efficiency of shading and reflectivity in various neighborhoods were compared to the amount of area being changed (per 100 sq. m.), which is a proxy of intervention cost, or the neighborhood population, which is an approximation of the residents receiving the different cooling benefits, more nuanced but expected results arise. Figures C18c‒C18f show that mitigating heat with shade or albedo in dense areas such as the focal neighborhoods result in more cost-efficient cooling and better-distributed (low per-capita) savings. These values, while normalized, are still slightly exaggerated by the effects from neighborhood sizes and mitigation concentration explored in Figure, especially for changing shade in open spaces alone, which is lopsided due to the distribution of park space and interactions with nearby parks (Figure C18g).

When comparing different degrees of shade and reflectivity increases, it seems that the added savings from each added percent of tree cover has diminishing returns with greater increases, while savings from albedo retrofits may follow a more linear trend (Figure C19). Under increasing climatic heat stress, the value of the current landscape conditions’ cooling effects and their values becomes amplified. However, urban intensification (without temperature change) results in a dramatic loss of cooling value (Figure C20a). Temperature increases in Yonkers far greater from local changes than climatic pressures (Figure C20b). A comparison of the site changes suggested by Groundwork HV, of vast difference in size, display expected total annual savings and average summer temperature change (Figures C21a, C21b). Compared to other parcel-scale changes, the Palisades Tower intervention had much greater mitigating impacts. The Greenlink had the greatest effect on temperature, while the Greenway produced more energy savings. Lastly, relative cost-efficiencies, adjusted by area per 100 sq. m. changed, were compared between adding tree cover or reflective surfaces and between intervening in different landcover types. High-development and open spaces are the most cost-efficient places for heat mitigation (Figure C22). Open spaces are generally much cheaper to shade than development but it’s often more expensive to change open spaces’ reflectivity. Open spaces provide more marginal savings per 100 sq. m. albedo increase (or one average retrofitted Yonkers building), which is reasonable given many open space surfaces and pavements have dark color, while high development provides slightly more savings per 100 sq. m. shade increase (or shade from one average Yonkers tree at 10 years after planting), due to low existing tree cover.

4.2 Errors and Uncertainty 
The specificity of our study was limited by the resolution and quality of available data. We encountered disparities between the use of various temperature datasets, methods for deriving surface temperature, and tree cover datasets. The nighttime LST collected from ECOSTRESSS showed unreliable geographic reference with actual locations, which was manually fixed by the team. The accuracy of our outputs has been limited by the InVEST model's simplicity and structure. InVEST does not have the specificity to model small-scale interventions, and its inputs are not structured to make these specific changes intuitively. The model does not account for the effects of water, instead denoting bodies of water as greenspaces, which mischaracterizes the disparate effects of shallow bodies. The spatiality of humidity, important for ‘felt’ temperatures, is also disregarded. The model’s in-situ parameters, especially for monetary valuations, are unexplored and based on assumptions. Moreover, the energy consumption data collected from Howard et al. (2020) does not capture the existing consumption scenario. Hence, the accuracy of energy evaluation in our study has been compromised with the lack of data specificity. Because InVEST resamples all outputs at the landcover input resolution, outputs and valuations do not match the Earth observation data’s precision. Because of the uncertainties in InVEST inputs, the model’s results in this case should be used for comparison of cumulative effects between scenarios, instead of expectations for precise outcomes.

4.3 Future Work
Some possibilities of future works to build on this project include connecting Google Earth Engine with the InVEST Python API to increase accessibility and make intervention/scenario modeling possible for users and end partners based on their own analytical needs. Fine-tuning valuations of urban heat mitigation methods can further improve the spatial understanding of intervention locations. This could be accomplished with more specific data about the cooling energy consumption of more building types, and the integration of landcover with more precise, local vector maps. Since InVEST has certain limitations for simulating micro-scale intervention scenarios, using micro-climatic modeling would help Groundwork Hudson Valley better understand small-scale heat dynamics. In case of detailed and accurate evaluation of work-productivity loss, the output can be studied in conjunction with the spatial distribution of outdoor occupations. Refining proximity analysis methods and adding additional variables, such as mode of transportation, convenience store locations, and health facility locations will allow our partners to further develop targeted intervention strategies. Future teams can perform more in-depth statistical analyses to look at the relationship between walkability, heat, and socio-economic or health variables. They may also continue to analyze the spatial dynamics of heat mitigation interventions.
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5. Conclusions
The team mapped LST and vulnerability to heat to better understand how UHI impacts are spatially distributed in Yonkers and reveal where and what type of interventions may be most effective. Spatial data depicting the physical landscape characteristics across Yonkers revealed differing levels of and factors in exposure to urban heat effects across the city. The vulnerability of communities to these effects was understood through local relationships between sociodemographic data, LST, and related health conditions. Application of the InVEST model allowed for a calculation of the possible benefits resulting from a wide range of intervention scenarios. In addition, these results were used to inform Groundwork HV on potential strategies for proposed cooling intervention implementation and their relative cooling benefits. Different mitigation strategies via InVEST modeling values cooling benefits of the landscape in terms of community benefits based on reduced energy consumption, worker productivity, and reduced temperatures, with the goal being to provide efficient UHI relief, particularly in vulnerable neighborhoods.
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7. Glossary
Albedo – the fraction of light that is reflected by a surface
Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) – a tool to access and transform geospatial data from a variety of federal data archives
Cooling Capacity – a measure of a system’s ability to remove heat
Cooling Centers – community/city organized locations set up to provide nearby residents an air-conditioned refuge from the heat
Earth Observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and biological systems over space and time
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) – satellite mission that aims to measure how the terrestrial biosphere changes in response to environmental changes such as water availability
Evapotranspiration – the sum of evaporation of water from land and other surfaces and through transpiration by plants
Heat Mitigation Index – an output index from InVEST model that accounts for the cooling effect of green spaces (>2 hectors) on surrounding areas.
Hotspots – areas of high land surface temperature
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) – a suite of models used to map and value the goods and services from nature that benefit human life
Landsat 8 – an Earth-imaging satellite from NASA, launched in 2013
Land Processes Distributed Active Archive Center (LP DAAC) – one of several discipline-specific data centers within the NASA Earth Observing System Data and Information System (EOSDIS)
Land Surface Temperature (LST) – the temperature of the surface of the Earth
Operational Land Imager (OLI) – sensor aboard the Landsat 8 satellite that measures visible, near-infrared, and shortwave infrared wavelengths
Thermal Infrared Sensor (TIRS) – sensor aboard the Landsat 8 satellite that measures both Earth’s surface temperature and atmosphere temperature
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9. Appendices
Appendix A

Table A1
List of Earth Observations and remotely sensed imagery used in data analysis.
	Platform/ Program
	Sensor
	Product ID
	Purpose
	Dates Used
	Acqui-sition Method
	Resolution

	Landsat 8
	Operational Land Imager (OLI)
	LANDSAT/OLI/LT08/C01/Level-2
	Calculate NDVI to Correct Emissivity to Actual Surface Emissivity
	June 1st – August 31st of 2014 – 2020
	GEE
	30-meter

	
	Thermal Infra-red Sensor (TIRS)
	LANDSAT/TIRS/LT08/C01/Level-2
	Calculate LST for input into heat-vulnerability modeling and albedo for InVEST model
	
	
	100-meter

	Landsat 7
	Enhanced Thematic Mapper Plus (ETM+)
	LANDSAT/LE07/C01/T1_TOA
LANDSAT/LE07/C01/T1_SR
	Calculate NDVI-Emissivity Correction and LST
	June 1st – August 31st of 1999 – 2020
	
	30-meter, TIR data were originally 60-meter

	Landsat 5
	Thematic Mapper (TM)
	LANDSAT/LT05/C01/T1_TOA 
LANDSAT/LT05/C01/T1_SR
	
	June 1st – August 31st of 1984 – 2011
	
	30-meter, TIR data were originally 120-meter

	Landsat 4
	
	LANDSAT/LT04/C01/T1_TOA
LANDSAT/LT04/C01/T1_SR
	
	June 1st – August 31st of 1987, 1989
	
	30-meter, TIR data were originally 120-meter

	ISS-ECOSTRSS
	N/A
	ECO2LSTE.001
ECO2CLD.001
ECO3ETPTJPL.001
	Calculate mean nighttime LST and evapotranspiration over study area
	June 1st – August 31st of 2018, 2019, 2020
	LP DAAC AppEEARS
	70-meter

	USGS National Elevation Dataset (NED)
	-
	3DEP products
	Used as input in the heat risk model
	-
	USGS
	30-meter

	Multi-Resolution Land Characteristics (MRLC) Consortium
	-
	Land Cover,
Urban imperviousness
	Used as input in the heat risk and InVEST model
	2019
	NLCD
	30-meter

	NOAA NCEP/NCAR
	-
	NCEP_RE/  surface_wv
Total Water Column Vapor
	Used to correct BT TOA images by atmospheric conditions in LST derivations
	June 1st - August 31st of 1984 – 2020 
	GEE
	2.5 arc degrees

	ASTER Global Emissivity Dataset (GED)
	
ASTER
	NASA/ASTER_GED/AG100_003 
Emissivity Mean Bands 10-14
	Used to calibrate BT TOA images by actual surface emissivity in LST derivations
	2000 - 2008
	
	100-meter

	University of Maryland Hansen Global Forest Watch (GFW)
	-
	 UMD/hansen/ global_forest_change_2020_v1_8
Tree Canopy Cover, Tree Cover Loss
	Used to calculate shade for InVEST model
	2000 – 2019 
	
	1 arc second

	Google / European Commission Joint Research Center (JRC) Global Surface Water
	
-
	JRC/GSW1_3/ GlobalSurfaceWater
Water Occurrence, Water Transition Classes
	Used to remove water bodies from LST calculations
	2018 – 2020 
	
	30-meter

	Yale Center for Earth Observation (YCEO) Surface Urban Heat Islands
	MODIS 
	Buffers from human development
	Used to filter locations for appropriate reference regions
	2016-2018
	
	300-meter



Table A2: List of ancillary datasets
	Parameter
	Provider
	Purpose
	Dates Used
	Source
	Resolution

	Building footprint, height 
	Westchester County GISHub 
	Used to calculate building intensity for InVEST model
	2018
	Westchester County GIS Hub
	Individual Building structure

	Zoning Districts of Yonkers
	Westchester County GISHub
	Used to categorize the type of buildings
	2011-2020
	Westchester County GIS Hub
	Zoning District

	Humidity
	NOAA Global Forecast System (GFS)
	Used as input in the InVEST model
	2015 – 2020
	GEE
	0.25 arc degrees

	Elevation
	Gridded Surface Meteorological (gridMET) Dataset
	
	
	
	2.5 arc minutes

	Ecoregions data (Level IV)
	US EPA
	Used to filter for appropriate reference locations by ecology
	2013
	GEE
	Regional Vectors

	
Precipitation
	NASA Earth Exchange (NEX), Downscaled Climate Projections (NEX_DCP30)
	Used to filter for appropriate reference locations by precipitation
	2015 – 2020  
	GEE
	30 arc seconds

	Near-Surface Air Temperature
	
	Used to predict spatial differences in temperature trends
	1984 – 2050 
	
	

	2-meter Air Temperature
	National Integrated Heat Health Information System (NIHHIS)
	Used to compare in-situ measurements with EOs, used to study diurnal air temperature patterns
	August 4th, 2019
	NOAA Climate Program Office - NIHHIS
	-

	Yonkers city boundary files
	ACS
	Study Area, block group, and census tract boundaries
	2010
	ACS
	-



Table A3: List of socio-demographic and health variables used in analysis.
	Dataset
	Granularity
	Date/Time
	Source

	Population density
	Census tract
	2019, 5-year estimate (2015-2019)
	American Community survey (ACS)

	Percent population under 5 years old
	
	
	

	Percent population over age 65
	
	
	

	Percent population over 65 years of age and living alone
	
	
	

	Percentage of Hispanic population
	
	
	

	Percentage of black population
	
	
	

	Percentage of foreign-born population
	
	
	

	Percent population who speaks English less than ‘very well'
	
	
	

	Percent population with income below poverty level 
	
	
	

	Percent household with no car
	
	
	

	Percent population using public transportation
	
	
	

	Percent population without health insurance
	
	
	

	Percentage population (18-64 years) that has a disability
	
	
	

	Percentage population (16+) that are unemployed 
	
	
	

	Percentage houses built before 1980
	
	
	

	Percent population who walks to workplace
	
	
	

	Asthma patients
	Census tract
	2020
	CDC PLACES: Local Data for Better Health

	People with obesity
	
	
	

	Stroke patients
	
	
	

	People with high blood pressure
	
	
	

	People with diabetes
	
	
	

	COPD patients
	
	
	



Table A4: Shade per Landcover Type as determined by NLCD from 2016 versus Hansen Global Forest Watch from 2019.
	NLCD Landcover Class
	Class Area
in 2016
(sq. meters)
	Tree Cover %
in 2016 from 2016
NLCD Tree Cover
	Tree Cover %
in 2019 from 2019
Global Forest Watch

	Open Water
	5,742,752
	0%
	0%

	Developed – Open Space
	10,378,111
	51%
	62%

	Developed – Low Intensity
	11,993,349
	31%
	17%

	Developed – Medium Intensity
	14,457,113
	10%
	3%

	Developed – High Intensity
	6,633,524
	0%
	0%

	Barren Land
	79,099
	0%
	0%

	Deciduous Forest
	2,727,102
	83%
	100%

	Evergreen Forest
	119,547
	64%
	93%

	Mixed Forest
	66,515
	58%
	95%

	Shrub/Scrub
	55,729
	0%
	3%

	Grassland/Herbaceous
	109,660
	0%
	44%

	Pasture/Hay
	6,292
	0%
	14%

	Cultivated Crops
	899
	21%
	0%

	Woody Wetlands
	31,460
	82%
	100%

	Emergent Herbaceous Wetlands
	20,674
	0%
	45%

	Total
	52,421,824
	24.5%
	27.2%




Table A5: Determined energy consumption, electricity cost, and relative humidity of 8 building types.
	Type No.
	Building Type
	Corresponding Zoning Districts
	Energy Consumption (kWh/m2/°C)
	Relative Humidity (%)
	Electricity Cost ($/kWh)

	1
	residential 1-4 family
	2 Family Dwellings, Detached 1 Family Dwelling
	0.956
	



	45
	0.232

	2
	residential multi family
	Apartment Houses Low Density, Apartment Houses Medium Density, Elevator Apartment, High Density
	2.582
	45
	0.232

	3
	office
	Central Business District, Office Buildings and Research, Downtown Waterfront District
	9.380
	40
	0.116

	4
	store
	Wholesale Business and Storage
	2.435
	40
	0.116

	5
	warehouse
	General Industrial, Industry, Residences Excluded
Commercial, Storage, Light Manufacturing
	1.080
	35
	0.106

	6
	education
	Planned Executive Park (Floating Zone), Colleges, Univ.'s and Theological Seminaries
	3.050
	55
	0.106

	7
	other commercial
	Government Center District, General Business and Apt. Housing, Neighborhood Business & Apartments, Planned Industrial Residences, Planned Multi-Use District, Restricted Business, Residence, Planned Urban Redevelopment
	3.785
	50
	0.116

	8
	health infrastructure
	Health Facilities
	9.423
	50
	0.116
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Figure A2. Spatial distribution of LULC classes throughout the Yonkers in 2019.

Appendix B
Appendix B1: Reference (Baseline) Region Selection

The team compared LST in Yonkers with an unurbanized reference area to understand temperature anomalies in Yonkers and derive a UHI Magnitude for input into the InVEST model. To select reference regions, biophysical and climate data were used to filter regions with similar baseline environmental conditions to Yonkers. Similar proximity to waterbodies was processed from the JRC water layer (less than 15 km. from large bodies or 3 km. from small bodies); NASA Earth Exchange’s NEX-DCP30 (climate projections) rasters were filtered for similar future 10-year precipitation outlooks to Yonkers. Elevation from NED was used to select similar elevations to Yonkers (under 150 ft. altitude), and Level IV Ecoregions from the Environmental Protection Agency (EPA) were compared as ecology proxies. Buffers were applied around all urban areas, and their sizes were increased until few areas satisfying all requirements remained. This made use of geometries from the YCEO Surface Composites. 

As shown in Figure B1, rectangular regions were manually selected from the proxy variable-selected regions with avoidance of surface water, resulting in minor geographic shifts. These rural reference regions were found in northern Westchester County (Figure B1). A 30-m water occurrence layer from the Joint Research Center’s (JRC) Global Surface Water Map was used to remove water bodies from urban LST calculations. Other environmental layers were called into the GEE Code Editor to filter nearby locations for appropriate reference regions. These included the ecological regimes from the EPA Ecoregions Dataset (Level IV), precipitation estimates from the NASA Earth Exchange Downscaled Climate Predictions (NEX-DCP30), and buffers from human development derived from the YCEOSurface Urban Island Composites, based on MODIS imagery.

[image: ]
Figure B1. Mean summer 2014-2020 Land Surface Temperature map locating study area (Yonkers) and reference areas used for Urban Heat Magnitude calculations.

Appendix B2: Comparison of LST Processing Methods

Using GEE, this was easily adapted to other years, geographical extents, and even other Landsat missions. By applying our LST derivation to all Landsat mission 4, 5, 7, and 8 summer images, the team was able to understand the differences between data from different sensors (Figure B2). Even in the same years, there was substantial disagreement between the Landsats, and Landsat 7 often produced the highest temperatures. The discovery of this uncertainty led us to explore methods for LST derivation further; the GEE code was adapted to the newer Landsat 8, called Collection 2, which has advantages such as a surface temperature quality assessment band, better georeferencing, and removal of an extraneous striping effect from TIRS. Using the collection input images with the adapted open-source code resulted in exaggerated high temperature values and heat clusters. Since our main goal was to model heat and InVEST relates to air temperature, the original values were retained in lieu of Collection 2. With the assistance of the Fairfax Urban Development II (LaRC Summer 2021) DEVELOP team, a comparison was also made against LST derived from the USGS Landsat 8 Provisional Surface Temperature Product. In this method, cold and hot anomalies have a larger range of observations, with both lower minimums and higher maximums. The minimum average surface temperature was 12°C cooler and the maximum average was almost 6°C warmer in the USGS Provisional Product.
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Description automatically generated]Figure B2: Differences in summer Land Surface Temperature processed from Landsat Missions 4, 5, 7, and 8 (1984-2020)

Appendix B3: InVEST Model Execution

InVEST software processes in the user computer’s terminal. Results are output as files with defined locations, which were organized according to output type for comparison between scenarios. The base (null) scenario, representing existing conditions, and 97 scenarios of possible future circumstances or intervention strategies were modeled in InVEST for both day and night heat mitigation. The simplicity of InVEST makes quick (typically under 30 seconds) and simultaneous runtimes are possible. We used the InVEST Documentation User Guide as reference to understand processing within InVEST. When using actual evapotranspiration instead of potential evapotranspiration, the Cooling Capacity Index (CCi) for daytime is calculated at each pixel using albedo, shade, evapotranspiration, and the weighting coefficients (Equation B4), while the nighttime value uses just building intensity (Equation B5). Through the biophysical table and evapotranspiration raster, these factors belong to each landcover pixel based on type. However, if there are large green spaces near the pixel, its greenspace area index (GAi) based on nearby landcover pixels’ greenspace designation (Equation B6), will be greater than 2 hectares. In this case, InVEST would calculate Park Cooling Capacity (CCpark) based on the nearby greenspaces’ cooling effects and distances (Equation B7). 

The InVEST model evaluates Heat Mitigation Index (HMi) at each pixel by choosing the larger index value between general cooling capacity and park cooling capacity (Equation B8). Next, air temperature without mixing is computed for each landcover pixel, according to baseline temperature, UHI Magnitude (see Appendix B1), and the pixel’s determined Heat Mitigation Index (Equation B9). This is passed through a gaussian function where the ‘air temperature maximum blending distance’ is used as the kernel radius to derive actual expected air temperature at each pixel. Next, work productivity loss was derived from wet bulb globe temperatures (WBGT), calculated at each pixel from temperature and humidity (Equation B10). For work of ‘light intensity,’ 25% of productivity is lost if WGBT is over 31.5°C, 50% over 32°C, and 75% is over 32.5°C; ‘heavy intensity’ work loses 25% of productivity at WGBT of 27.5°C, 50% at 29.5°C, and 75% at 31.5°C. Lastly, avoided energy spending (Esb) is calculated for each building footprint based on local temperatures (resulting from local cooling effects) and the building type’s energy consumption and cost (Equation B11).

(Equation B4 and B5) Cooling Capacity Indices:

CCi (in Daytime - weighted factors) [Unitless] = 0.6 * shade + 0.2 * albedo + 0.2 * evapotranspiration	     (B4)
 
or	CCi (in Nighttime) = 1 – buildingIntensity				(B5)

Where i is the pixel in question and evapotranspiration is actual ET.

(Equation B6) Greenspace Area Index:

GAi = greenspacebinary * pixelarea * ∑ j when d > radius from i                                                   (B6)

Where j is all other pixels, and d is the ‘maximum greenspace cooling distance’.

(Equation B7) Park/Greenspace Cooling Capacity Index:
                                   CCparki = greenspacebinary * CCj * e(-(i,j)/d) * ∑ j when d > radius from i                                        (B7)

Where (i,j) is the distance between pixels.

(Equation B8) Heat Mitigation Index (HMi):

                                     HMi = CCi    or   CCparki  ( if  CCparki > CCi   and  GAi > 2 ha.)                             (B8)

(Equation B9) Pixel Air Temperature Without Mixing (Tnomixi):

                                                Tnomixi = (1 - HMi ) * UHImagnitude + Tairbaseline                                                (B9)
      
(Equation B10) Wet Bulb Globe Temperature:

                              WGBTi = 3.94 + Tairi * 0.567 + (RH/100 * 6.105 * e(17.27 * ( Tairi / ( 237.7 + Tairi )))              (B10)

Where Tairi is the air temperature (with mixing) of the pixel of concern and RH is relative humidity.

(Equation B11) Avoided Energy Spending:

                                          ESb = ( Tairbaseline + UHImagnitude - Tairb ) * consumption * cost                                  (B11)

where b is the building in question, Tairb is the average of Tair for all pixels i within building b, 
consumption is in kWhcooling/°Cincrease/m2footprint , and cost is in US Dollars (from energy savings table).

Appendix B4: Heat Mitigation Scenario Creation

One set of models isolated analysis of the base scenario by each of Yonkers’ 19 neighborhoods, using one feature shapefile after another, to evaluate the spatial distribution of mitigation metrics. The first type of possible scenarios created was future climate, which entailed changing day and night baseline air temperatures and air UHI Magnitudes. The 0.5°C increase in reference temperature (projected for the reference regions before 2028 by our trend analysis) was accompanied by a 0.39°C increase in UHI Magnitude, the 2°C increase by 2050 corresponded to a 1.57°C increase in UHI Magnitude, relative to trends in both baseline temperature and magnitude. In another scenario, building intensity, a variable in the landcover biophysical table, was increased to simulate future urban intensification in Yonkers. For pixels classified as medium development, building intensity was boosted from 40% to 50%, low development increased from 20% to 30%, and open spaces intensified from 8% to 10%. Another set of scenarios represented small-scale urban design projects, proposed or planned by Groundwork Hudson Valley and was accomplished by manual imposing small-scale value changes upon the landcover raster. The Yonkers Greenway (under construction) and the Riverfront Greenlink Connection (planned) were simulated by changing landcover in those expected locations to the Open Spaces type. Three development locations (Calcagno Projects, Palisades Tower, and Chicken Island) had landcover changed to a new landcover type with 100% albedo, and the Chicken Island site also gained a few pixels of deciduous forest (100% shade). 

Next, scenarios were created for high and extra-high shade and albedo across the city by increasing shade of Open Spaces, Low-, Medium-, and High-Development types in the biophysical table by 0.05 and then 0.2 each, while albedo was increased in these classes by 0.1 and 0.25, all in separate models. In another set of scenarios, shade and albedo were increased in all of these landcover types, by 0.2 and 0.25 respectively, in each neighborhood. This was done one at a time to compare spatial dynamics of intervening and mitigating, in addition to heat conditions. Additionally, shade was increased by 0.2 in separate neighborhoods for the open spaces class, which would be cheaper than establishing shade in more intense development. Shade and albedo were then increased, by 0.2 and 0.25 respectively, across Yonkers in each development class separately. Finally, a set of scenarios increased shade and albedo by 0.2 and 0.25 within the three focal neighborhoods. Comparatively, in two additional scenarios, shade and albedo were increased by 0.134 and 0.167 across the entirety of Yonkers. These increases were based on the proportion of total Yonkers area represented in the focal regions. Therefore, the total increase in shade and albedo are equal across both extents, allowing comparison of dispersed versus concentrated intervention.

Appendix B5: Hot-spot Analysis on Recent LST

In order to identify the locations recently experiencing intense land surface temperature, we conducted a Hot Spot Analysis, which located statistically significant spatial clusters of high values (hot spots) and low values (cold spots) using the Getis-Ord Gi* per-feature statistics. The null hypothesis of the statistics assumes complete spatial randomness within the input features. A local statistic calculated for each input feature within the neighborhoods determines if any local pattern in a feature and its surrounding neighbors is statistically significant from the global pattern.  We aggregated mean values of all LST rasters collected for year 2020 by census block to prepare our input for analysis. We ran the Hot Spot Analysis (Getis-Ord Gi*) tool in ArcGIS Pro in the context of inverse distance neighboring features within 1000 m threshold distance. The inverse distance spatial relationship uses greater influence from the neighboring features on the target feature for computational purposes. The Euclidean distance method has been selected to specify distances between the neighbors. These parameters were chosen based on iteration of the Getis-Ord-Gi overall map score, which revealed optimal inputs and sensitivities to threshold distances.


Appendix C
Table C1
6 principal components resulting from PCA analysis on 16 sociodemographic and 6 health variables. 
	Variables
	PC
1
	PC
2
	PC
3
	PC
4
	PC
5
	PC
6

	Population density
	-0.24
	0.09
	-0.05
	-0.23
	0.27
	-0.18

	% Population (18-64 years) that has a disability
	-0.18
	-0.15
	0.06
	0.21
	0.25
	0.29

	% Population without health insurance
	-0.24
	0.24
	0.23
	0.00
	-0.06
	0.03

	% Population over age 65 living alone
	-0.05
	-0.32
	0.33
	-0.30
	0.13
	-0.18

	% Black population
	-0.22
	-0.11
	-0.43
	0.09
	0.08
	-0.07

	% Population below age 5
	-0.06
	0.18
	-0.20
	-0.26
	-0.53
	-0.05

	% Foreign born population
	-0.24
	0.18
	0.19
	-0.16
	-0.01
	-0.01

	% Hispanic population
	0.23
	-0.25
	-0.28
	-0.01
	0.16
	0.01

	% Population who speaks English less than ‘very well'
	-0.23
	0.24
	0.34
	-0.05
	-0.10
	-0.06

	% Population over age 65
	0.05
	-0.42
	0.33
	-0.20
	0.05
	0.01

	% Population with income below poverty level
	-0.29
	0.06
	0.00
	0.02
	-0.04
	0.02

	% Population (16+) that are unemployed
	-0.16
	0.07
	-0.06
	0.07
	0.21
	0.73

	% Population using public transportation
	-0.03
	0.06
	-0.30
	-0.52
	0.39
	-0.14

	% Population who walks to workplace
	-0.15
	0.23
	0.15
	0.16
	0.45
	-0.10

	% Household with no car
	-0.30
	-0.02
	-0.01
	-0.12
	0.16
	-0.14

	% Houses built before 1980
	-0.05
	0.05
	-0.09
	-0.56
	-0.13
	0.47

	People with high blood pressure
	-0.19
	-0.41
	-0.07
	-0.01
	-0.10
	0.01

	People with Asthma
	-0.26
	0.01
	-0.29
	0.17
	0.02
	-0.12

	People with COPD
	-0.26
	-0.24
	0.12
	0.08
	-0.18
	0.06

	Diabetes patients
	-0.30
	-0.19
	-0.05
	0.01
	-0.13
	-0.02

	People with Obesity
	-0.29
	0.05
	-0.20
	0.10
	-0.14
	-0.12

	Stroke patients
	-0.26
	-0.32
	0.00
	0.04
	-0.09
	0.02

	Cumulative proportion
	42.3%
	57.5%
	66.3%
	74%
	78.6%
	82.5%



Table C2
Direct, Indirect and Global impact of explanatory variables resulted from SAR model.
	Variable
	Direct Impact
	Indirect impact
	Global Impact

	Albedo
	-2.07
	-4.55
	-6.62*

	DEM
	0.004
	0.01
	0.012*

	% Imperviousness
	0.027
	0.06
	0.09*


Note: * statistically significant global impact
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Figure C1. Daytime (left) and Nighttime (right) LST (°C) aggregated by census block.
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Figure C2. Morning (left) and afternoon (right) air temperature (°C) aggregated by census block.
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Figure C3. Diurnal change in LST (°C) (left) and air temperature (right).
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Figure C4. UHI magnitude (°C) in daytime (left) and nighttime LST (right).
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Figure C5. Projected LST (°C) (left) and air temperature (°C) in 2040 (right).
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Figure C6. Change in Study and Reference Region Mean Air Temperature Landsat-Derived Land Surface Temperature Benchmarks, and UHI Magnitudes, 1984-2020
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Figure C7. Distribution of heat, by percentile, from the different perspectives mapped.
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Figure C8. Social and health vulnerability calculated for Yonkers, NY.
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Figure C9. Correlation between environmental variables. 
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Figure C10. Exposure risk calculated using SAR model for Yonkers, NY.
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Figure C11. Heat risk index calculated for Yonkers, NY.
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Figure C12. Spatial distribution of LULC classes throughout the Yonkers in 2019.
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Figure C13. Cooling centers and their service areas in Yonkers, NY.
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Figure C14. Areas at walking distance from existing cooling centers in Yonkers, NY.
[image: Chart, bar chart

Description automatically generated]
Figure C15. Population Served by Existing Cooling Centers in Yonkers, NY.
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Figure C16. Spatial distribution of Heat Mitigation Index (HMi) in existing condition (Left) and % increase from existing HMi in intervention scenarios (right), where high shade and high albedo in the intervened scenarios represent 5% and 10% increase for each landcover pixel, respectively. (Note: % increase in HMi= (intervened HMi ‒ current HMi)/current HMi * 100%)
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Figure C16a. Neighborhood comparison of average cooling capacity index (current condition).
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Figure C16b. Neighborhood comparison of average air temperature (current condition).
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Figure C16c. Neighborhood comparison of heavy manual labor loss in summer (current condition).
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Figure C16d. Neighborhood comparison of total avoided energy spending (current condition).
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Figure C16e. Avoided energy spending per neighborhood square meter (current condition).
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Figure C16f. Avoided energy spending per neighborhood resident (current condition).

(Figure C17) Comparing Concentrations of Interventions
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Figure C17a. Change in average cooling capacity index (CCi) by concentration of intervention.
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Figure C17b. Change in total avoided energy spending by concentration of intervention.


(Figures C18) Comparing Intervening in Different Neighborhoods
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[bookmark: _Hlk79661932]Figure C18a. Change in total annual avoided energy spending from shading different neighborhoods.
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Figure C18b. Total annual avoided energy spending from reflectivity in different neighborhoods.
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Figure C18c. Change in annual avoided energy spending per area shaded from shading different neighborhoods.
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Figure C18d. Change in annual avoided energy spending per 100 sq.m. of added reflectivity in different neighborhoods.
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Figure C18e. Change in annual avoided energy spending per area resident from shading different neighborhoods.
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Figure C18f. Change in annual avoided energy spending per area resident from reflectivity in different neighborhoods.
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Figure C18g. Change in annual energy savings per area shaded from shading open space in different neighborhoods.
(Figure C19) Comparing Intervention Types and Magnitudes
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Figure C19. Change in total annual avoided energy spending by intervention type and magnitude.
(Figure C20) Comparing Current Scenario under Future Conditions
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Figure C20a. Change in total annual avoided energy spending under possible future conditions.
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Figure C20b. Change in average temperature (°C) under possible future conditions.

(Figure C21) Comparing Landcover-Imposed Site Interventions
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Figure C21a. Change in total avoided energy spending from various site interventions.
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Figure C21b. Change in total average temperature (°C) from various site interventions.


(Figure C22) Comparing Interventions in Different Landcover Types
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Figure C22. Change in annual voided energy spending per 100 sq.m. intervened from +20% shading or +25% reflectivity in different landcover types.
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Hot-spot analysis on Land Surface Temperature in Yonkers, NY
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