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1. Abstract 
Global avian population decline since the 1970s is largely attributable to habitat loss and degradation from 
anthropogenic disturbances. NASA DEVELOP’s Rhode Island Ecological Conservation team partnered with 
the Audubon Society of Rhode Island to compute land use land cover (LULC) maps of Rhode Island to aid 
in the conservation of the state’s 140 bird species. This project aimed to support the partner’s land acquisition 
strategies with updated and specific LULC classifications showing potential bird-habitat locations across the 
state. We incorporated remotely sensed data from Landsat 8 and 9 Operational Land Imager (OLI) into 
LULC maps using unsupervised classification techniques in ArcGIS Pro and supervised classification in 
Google Earth Engine. We generated six land classifications for 2023, which showed land cover dominated by 
upland habitats (forests, scrub/shrub, and grasslands), followed by development. We used TerrSet’s Land 
Change Modeler to forecast LULC change through 2043, using 2011 and 2021 National Land Cover 
Database (NLCD) land cover maps derived from Landsat 8 and 9 data. Project results suggest that non-urban 
upland and wetland habitats will decrease over time, while development will continue to encroach on non-
urban avian habitats. Our maps and associated data will allow for more efficient land acquisition and 
management efforts to support avian habitat conservation across Rhode Island. Our study shows that data 
acquisition and processing from open data sources is feasible and further analysis can be done through GIS 
classification tools. More analysis is needed beyond this study to obtain more detailed land cover maps, 
though Audubon can aid its targeted conservation efforts with our current, historic, and forecasted LULC 
maps. 
 
Key Terms 
Remote sensing; land use land cover change (LULCC); unsupervised classification; ecological forecasting; 
Landsat; C-CAP; NLCD; Rhode Island; Audubon Society.  
 

2. Introduction 
2.1 Background Information 
Avian populations have declined globally by three billion birds since 1970 (Rosenberg et al., 2019). Most of 
this decline is directly related to habitat loss and degradation, as well as other anthropogenic influences such 
as feral domestic cats, wind turbines, glass collisions, and pesticide usage (Richard et al., 2021). Birds provide 
incalculable ecosystem services, including wildflower and fruit tree pollination, seed dispersal, insect 
population control, and scavenging (Rosenberg et al., 2019; Clarkson, 2023). Avifauna habitat monitoring is 
crucial as rapidly changing land covers like rocky habitats, salt marshes, seasonal pools, and shrubland affect 
shelter, food, and nesting availability (Berry et al., 2015; Caron & Paton, 2007; Golet et al., 2001; McKinney & 
Paton, 2009). Birds are often indicators of overall environmental health and integrity, so by tracking avian 
populations and critical habitat conditions we can ensure proper and effective ecosystem preservation 
(Rosenberg et al., 2019). 
 
Situated on the Atlantic seaboard, the small U.S. state of Rhode Island is home to more than 140 bird species 
throughout the year (Clarkson, 2023; Berry et al., 2015; Caron & Paton, 2007; McKinney & Paton, 2009). In 
2023, the Audubon Society of Rhode Island (Audubon) published a novel study titled The State of Our Birds 
Parts I and II (Clarkson, 2023). It assessed the status of bird habitat within Audubon lands, focusing on both 
breeding season and overwintering bird populations. With this study, Rhode Island stands as the only state in 
the union to possess a comprehensive report for both breeding and overwintering birds. Among the 
extensive list of species included within the Audubon reports, nine Responsibility Bird Species (RBS) were 
identified as ‘umbrella species’, meaning that their conservation “may indirectly lead to the conservation of 
other birds with similar habits” (Clarkson, 2023).   
 
The Rhode Island RBS identified by Audubon are the Chimney Swift (Chaetura pelagica), Barn Swallow 
(Hirundo rustica), Common Yellowthroat (Geothlypis trichas), Prairie Warbler (Setophaga discolor), Eastern Towhee 
(Pipilo erythrophthalmus), Black-and-white Warbler (Mniotilta varia), Wood Thrush (Hylocichla mustelina), Scarlet 
Tanager (Piranga olivacea), and Red-winged Blackbird (Agelaius phoeniceus) (Clarkson, 2023). RBS are all 
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experiencing nationwide declines and require additional monitoring and management. Additionally, through 
climatic and anthropogenic factors such as urbanization, sea level rise, and development, Rhode Island is 
experiencing volatile land use land cover (LULC) changes, which further degrade, alter, or shift avian habitats 
and populations (Berry et al., 2015; Caron & Paton, 2007; Lussier et al., 2006; Sims et al., 2013).  
 
The National Oceanic and Atmospheric Administration (NOAA) Coastal Change Analysis Program (C-CAP) 
designates coastal land cover classes within the United States, including Rhode Island. C-CAP's most recent 
high-resolution dataset from 2021 is a reliable LULC data source utilized at a state level by wildlife biologists, 
conservationists, and developers. Audubon relied on standardized C-CAP land cover classification schema 
for its The State of Our Birds study. They designated the following eight C-CAP-defined habitats as the “most 
important” for RBS in Rhode Island: Developed High Intensity, Grassland/Herbaceous, Forested Wetlands, 
Scrub/Shrub Wetlands, Scrub/Shrub, Forest Edge, Deciduous Forest, and Deciduous Forest Edge. 
 
Rhode Island, like many other jurisdictions of the United States, has witnessed significant shifts in land usage 
over the past several decades, with areas of "low disturbance" LULC classes like evergreen forest and 
pastureland transitioning into "high disturbance" classes like developed land (Mikhailova et al., 2021). Remote 
sensing imagery, GIS tools, and TerrSet modeling have all proven successful in conveying LULC change and 
predicting future LULC trends (Campbell et al., 2018; Lussier et al., 2006; McKinney & Paton, 2009; Pinos & 
Dobesova, 2019; Sims et al., 2013; Spruce et al. 2018; Spruce et al. 2020). Integrating remote sensing 
frameworks with Earth observation data into user-friendly habitat monitoring methods can enable nonprofit 
organizations and other conservation groups to easily highlight areas of ecological importance and more 
effectively set priorities for land acquisition and management. By incorporating remote sensing frameworks 
into current and projected LULC maps, we can support Audubon’s efforts to highlight areas of conservation 
importance for RBS and prioritize areas for land acquisition and management. 
 
2.2 Study Area & Study Period 
Our study focused on the entire state of Rhode Island, the smallest state in the United States, which 
encompasses 776,960 acres (Figure 1). The study period regards 2011 to 2043. Due to the file formats used in 
the ecological forecasting software, TerrSet, the study area for forecast LULC change maps included some 
area outside of Rhode Island [geographic coordinates 42.018798, 41.146339, -71.862772, -71.120570].  
 
 
 

 
Figure 1. The study area of Rhode Island, USA. 
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2.3 Project Partners & Project Objectives 

To undertake this project, we collaborated with The Audubon Society of Rhode Island. The Audubon’s 
mission is to protect birds, other wildlife, and their habitats through conservation, education, and advocacy, 
for the benefit of people and all other life. Audubon manages approximately 10,000 acres (about half the area 
of Manhattan) of wildlife habitat in Rhode Island, making them the second-largest private landowners in the 
state. Among the lands Audubon oversees, 14 refuges are open to the public. Much of the managed land, 
however, has not been surveyed, and existing knowledge primarily stems from land cover usage maps dating 
back to 2011. In 2022, volunteers conducted wildlife surveys of the publicly accessible refuges, focusing on 
both breeding season and overwintering bird populations. The data collected became the basis for the State of 
Our Birds reports. Audubon has identified that its current land acquisition strategy could be improved through 
access to more specific information on potential bird-habitat locations throughout the state. Their current 
research relies upon an outdated Rhode Island LULC map from 2011. The landscape has undergone 
significant alteration over the last thirteen years. 
 
Our project began with two primary objectives: [1] Use NASA Earth imagery to generate LULC change maps 
based on historical and contemporary land cover compositions from 2013 to 2023, to evaluate recent changes 
across Rhode Island and [2] based on the 2013 and 2023 LULC maps, develop a series of forecasted LULC 
maps projecting conditions in four equal interval time steps from 2023 to 2043. The goal of the objectives 
was to aid Audubon in making better informed land acquisition choices in support of avian habitat 
conservation. Due to the nature and scope of this feasibility study, the project’s initial objectives were 
modified as work progressed in response to time constraints, available technological support, and partner 
needs.  

 
3. Methodology 
3.1 Data Acquisition  
The data acquisition process for the GIS-based LULC mapping method involved locating the appropriate 
satellite imagery and ancillary datasets to support habitat monitoring and land cover change analysis in Rhode 
Island. We obtained satellite imagery from USGS Earth Explorer. We downloaded Collection-2 Level-2 
Landsat 9 OLI-2 imagery for the year 2023 (Table 1). The Collection-2 Level-2 data uses surface reflectance 
algorithms to correct for temporally, spatially, and spectrally varying scattering and absorbing effects of 
atmospheric gases, aerosols, and water vapor. The May 22, 2023, date was selected based on low-to-no cloud 
cover for the terrestrial portion of the image.    
 
Major ancillary datasets were obtained for 2023 (Table 1). Historic and current LULC maps, such as NLCD 
and C-CAP provided baseline locations for the study’s six classified land uses throughout the state. We also 
incorporated state level vector datasets for roads, infrastructure, and hydrology into the analysis. 
 
Table 1 
List of sensors and data sources primarily utilized for this project. 

Source Product Date(s) Data 

Landsat 9 OLI-2 
Primary Source 

LC09_L2SP_012031_20230522_20230524_02_T1 
LC09_L2SP_012031_20231130_20231201_02_T1 

5/22/23 
11/30/23 

Bands 2–7 

Landsat 8 OLI 
Primary Source 

LC08_L2SP_012031_20130502_20200913_02_T1 05/02/13 Bands 2–7 

USGS National 
Land Cover 

Database (NLCD) 
Ancillary Data 

NLCD 2011 Land Cover (CONUS) 

NLCD 2021 Land Cover (CONUS) 
2011 
2021 

LULC 
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NOAA Coast 
Change Analysis 

Program (C-CAP) 
Ancillary Data 

Hi-res (1-m resolution) Rhode Island Land Cover 
2016 LULC 

USFWS National 
Wetlands Inventory 

(NWI) 
Ancillary Data 

NWI Rhode Island 
2010 LULC 

USDA         
Cropland Data        
Ancillary Data 

Rhode Island Cropland 2022 LULC 

University of Rhode 
Island (URI) 

Environmental Data 
Center and Rhode 

Island GIS (RIGIS) 
Ancillary Data 

 

Lakes and Ponds 24k 2023 

Single Category 
Vectors 

Rivers and Streams 24k 2023 

RIDOT Roads 2016 2016 

Building Footprints 2018 

USGS Mineral 
Resources 

Rhode Island US Mine Features (Quarries and 
Open Pit Mines) 

2006 
Single Category 

Vector 

Narragansett Bay 
Estuary Program 

Ancillary Data 

Solarfields 2022 Clark 
Solarfields Cleared Land 2022 

2022 
Single Category 

Vector 

US Census Bureau 
Cartographic 

Boundary Files 
Ancillary Data 

1:500,000 National 2022 
Single Category 

Vector 

 
3.2 Data Processing 
We used a standardized process in QGIS version 3.3.4 to clean a single, cloud-free Landsat 9 surface-
reflectance scene from May 22, 2023. We selected bands 2–7 (Blue (B), Green (G), Red (R), Near Infrared 
(NIR), Short-wave Infrared 1 (SWIR1), and Short-wave Infrared 2 (SWIR2)) to be preprocessed to surface 
reflectance and applied DOS1 atmospheric corrections using the Semi-automatic Classification Plugin (SCP) 
(Congedo 2021). 
 
We brought the QGIS-processed surface reflectance bands into Esri ArcGIS Pro 3.2.2 using the Composite 
Bands tool. Pyramid layers and statistics were automatically generated during the composite process. Bands 4 
(R), 5 (NIR), and 6 (SWIR1) were added individually to calculate the Normalized Difference Vegetation 
Index (NDVI) and the Moisture Stress Index (MSI). We created NDVI and MSI layers to help enhance 
differences between wetland and upland forms of vegetated land cover.  
 
The sequence of our ‘reclassify by feature’ processes was intentional. We merged ancillary data representing 
development first, in order from least recent and accurate to most recent and accurate. We added quarries 
and mines first, then roads, and building footprints, solar installations, and finally agricultural operations. Due 
to the inherent challenges of differentiating vegetated landcovers, we used a process of elimination approach 
to pull all the other readily available land cover classes out first, leaving only a broadly defined “habitat” class 
containing everything from forests, to grasslands, to wetlands. The classes defined prior to work on the broad 
habitat class included: Open Water [1], Agricultural [3], and another broad class [2] containing Developed, 
Open Space, and Barren pixels.   
 



 
   
 

5 

 

Using GIS, we processed the May 22, 2023, Landsat scene into a composite of bands 2–7 with NDVI and 
MSI layers that we calculated from some of the bands. We applied an offshore open water mask to the 
composite. We processed the composite using the Unsupervised Iso Cluster tool in ArcGIS Pro. This tool 
groups pixels by their spectral signatures. We used the Esri ArcGIS Pro defaults to run the clustering 
(classes=30, min. class size=20, sample interval=10). Our preliminary unsupervised classification computed 
30 distinct classes. We carefully reviewed the results and compared them to ancillary hydrological data and 
red-green-blue (RGB) imagery appropriate to the subject scene’s date to discern which cluster classes were 
associated with open water. To isolate all areas of open water within the scene, we extracted the open water 
clusters from our classification area. We then masked the water from the map, so it would be excluded from 
the clusters. This process was conducted to improve unsupervised land classification outcomes going 
forward. We re-ran the Unsupervised Iso Cluster routine once more using the same default parameters as 
before. The outcome of this operation was a preliminary LULC classification map with 26 distinct pixel 
classes to refine for our final map. 
 
The 26 classes were reclassified and refined into six LULC categories using a variety of approaches. The six 
classes were based on pared down NLCD classifications: 1) Open Water, 2) Developed/Open Space/Barren, 
3) Agricultural, 4) Upland Habitat, 5) Woody Wetlands, and 6) Non-Woody Wetlands (Table 2.) We viewed 
each cluster individually and started by using a ‘process of elimination’ or ‘low-hanging fruit’ approach, where 
we began reclassifying the clusters into organized landcover classes if it seemed only one class was present in 
the cluster. We spent time analyzing the pixels within each remaining class and compared the pixel groups to 
underlying map layers of higher resolution imagery, and to other ancillary data (Table 1). We then grouped 
classes together using the reclassify tool. 
 
To ‘cluster bust’ or break confused cluster classes up based on the multiple landcovers each class represented, 
we overlaid ancillary datasets. This process involved securing data for roads, building footprints, streams, 
waterbodies, wetlands, agricultural land, solar energy installations, and quarries (Table 1). All ancillary data 
was in vector format. Each of these layers needed to be processed in a way that made the ancillary data 
compatible with the LULC layer we were working to create. Some extra pre-processing steps were necessary 
with the ancillary vectors to best use the data in a non-native raster format. For instance, we applied a 30-foot 
buffer to the roads vector layer. Because road layers are polylines symbolizing the street centerline, adding a 
30’ buffer captured the average roadbed and roadside maintenance areas of most roads. The resulting buffer 
layer was then dissolved into a single feature and rasterized. We adjusted the properties of the roads raster to 
ensure it was consistent with our working LULC raster. We merged our roads raster with our preliminary 
LULC layer so that any cells in the preliminary LULC intersecting the roads would have the existing class 
value replaced. We repeated this process on each ancillary layer, with minor modifications to accommodate 
the spatial needs of each layer. Rasterizing feature-specific vector data and merging it with our classification 
raster was especially useful for defining the entire Agricultural Lands class, Wetlands classes, and capturing all 
roads, building footprints, quarries, mines, and solar installations into the Developed class. The final step in 
this process was to vectorize the LULC layer and clip it to the same Census Bureau state outline we had used 
previously. We refrained from clipping the LULC to the state outline in previous steps to allow the most 
possible area for the iso cluster software and the reviewers to draw landscape information from. Vectorizing 
the raster at the end of the process also allowed us to smooth the cells into simplified shapes thereby 
improving aesthetics as well as making it easier to calculate the geography of each feature. 
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Table 2 
Classifications for our six GIS LULC land cover classes. 

Class 
Description 
(based on pared down NLCD land use land cover classifications) 

Open Water Areas of open water generally with less than 25% cover of vegetation or soil. 

Developed/Open 
Space/Barren 

• Low-High Intensity 
20-100% cover of impervious surfaces. Uses such as industrial, commercial, 
roadways, residential. 

• Open Space 
<20% cover of impervious surfaces. Uses such as single-family residential, parks, 
golf courses, landscaping. 

• Barren areas of bedrock, sand, other bare earthen material. 

Agricultural 

Some other agricultural uses such as dairies or greenhouses will fall into the developed categories. 

• Pasture/Hay 
Areas of cultivated grasses, legumes, or grass-legume mixtures planted for livestock 
grazing or the production of seed or hay crops, typically perennial. Pasture hay 
vegetation accounts for >20% total vegetation. 

• Cultivated Crops 
Areas used to produce annual crops such as apples, sweet corn, potatoes, vineyards, 
cranberries. Any land actively tilled. 

Upland Habitat 

• Grassland/Herbaceous 
Natural areas dominated by graminoid or herbaceous vegetation, generally >80%.  
Not subject to tilling but can be utilized for grazing. 

• Scrub Shrub 
Areas dominated by shrubs <5 meters tall/>20% cover. Includes true shrubs, tree 
saplings, stunted trees. 

• Deciduous Forest 
Areas dominated by trees >5 meters tall/>20% cover, >75% shed foliage 
seasonally. 

• Mixed Forest 
Areas dominated by trees >5 meters tall/>20% cover, neither deciduous or 
evergreen is >75% cover. 

• Commercial Timberland 
Primarily evergreen forest plantations, and oak (spp.) stands. 

Woody Wetlands 

Areas where forest or shrubland vegetation accounts for >20% of vegetative cover and soil substrate 
is periodically-permanently saturated or inundated. 

• Forested Wetlands 

• Scrub Shrub Wetlands 

Non-Woody 
Wetlands 

Includes emergent herbaceous wetlands (areas where perennial herbaceous vegetation >80% of 
cover, and soil/substrate is periodically saturated/inundated with water. 

 
For the TerrSet modeling we processed 2011 and 2021 NLCD data. Due to modeling constraints, we had to 
reclassify the 15 NLCD classifications into condensed 8 class NLCD maps (Table 3). The 8 classes used in 
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TerrSet’s projection scheme were: Open Water; Developed/Open Space; Barren; Forest/Scrub-Shrub 
(Upland); Grassland/Herbaceous (Upland); Agricultural Land; Woody Wetland; and Non-woody Wetland. 
 
Table 3 
Reclassification of NLCD classes, for TerrSet modeling. 

NLCD Land Cover Classification Reclassified Land Cover Classification 

Open Water Open Water 

Developed, Open Space 

Developed 
Developed, Low Intensity 

Developed, Medium Intensity 

Developed, High Intensity 

Barren Land Barren 

Deciduous Forest 

Forest 
Evergreen Forest 

Mixed Forest 

Shrub/Scrub 

Grassland/Herbaceous Grassland/Herbaceous 

Pasture/Hay 
Agricultural Lands 

Cultivated Crops 

Woody Wetlands Woody Wetlands 

Emergent Herbaceous Wetlands Non-woody Wetlands 

  
TerrSet’s Land Change Modeler requires precise coordinate and spatial resolution matching for all uploaded 
files. Maps were exported from ArcGIS Pro as IMAGINE files and converted to a .rst file using TerrSet’s 
GDAL Conversion Tool. The Rhode Island building footprints, road layer, rivers and streams, lakes and 
ponds, and digital elevation model variables were converted into rasters in ArcGIS Pro, then reclassified to a 
single object layer, so the objects had a value of one and background had a value of zero. These driver 
variable rasters were also exported as an IMAGINE file, converted to. rst format in TerrSet, then set with a 
default distance boundary using TerrSet’s Distance tool. Lastly, these driver variable files were projected in 
TerrSet to the 2021 map data layer so that the formatting of all input spatial data to the model was consistent. 
 
3.3 Data Analysis 
To assess the agreement of our 2023 unsupervised land classification map, we conducted an accuracy 
assessment using a confusion matrix. The confusion matrix was created by using randomly generated 
accuracy assessment points in ArcGIS Pro and comparing them to reference imagery for similar dates. We 
used the geoprocessing tool Create Accuracy Assessment Points with the following parameters: sample 
size=500 and stratified random sampling method; N=507. We uploaded the accuracy assessment points to 
Google Earth (Imagery: Airbus, May 23, 2023) and manually classified each point into one of six land cover 
classes (Table 2). A confusion matrix with Cohen’s Kappa statistics were created in Microsoft Excel to 
calculate accuracy amongst each land cover class. A land cover map can be considered acceptable if it has an 
overall Kappa value greater than or equal to 0.80. A Kappa value of 1 indicates perfect agreement, where a 0 
indicates agreement no better than expected by chance (Detorri and Norvell 2020).  
 
Projected 2043 land cover data were created in Terret’s Land Change Modeler by analyzing historical land use 
change from 2011 and 2021 and using the driver variables (Table 1) to project that change to 2043 in 5.5-year 
intervals from 2021 to 2026, 2032, 2037, and 2043. A transition potential model showed that elevation was 
not a significant driver variable, so projections were run using only four variables of distance to lakes, roads, 
buildings, and ponds. We determined that a Weighted Normalized Likelihood (WNL) procedure was the best 
test to forecast the 49 possible LULC changes, as the WNL is capable of quickly calculating many changes 
with maximum accuracy (Eastman et al., 2019). The WNL calculates an accuracy assessment for each class to 
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class change which was used to affirm the validity of the model (Appendix C). Land class acreage basic 
statistics were calculated and visualized in Microsoft Excel.  
 
To assess estimated likelihood of our forecasted future land cover change maps to predict class specific 
change, we used a class-by-class accuracy for change output. This change is the likelihood that a pixel of that 
recorded land class change was correctly classified into the transitioned class. The change occurrence 
likelihood scale ranges from 0–1, with anything above a 0.5 indicating a correct, or accurate classification 
transition, anything under 0.5 indicating a pixel is unlikely to undergo that change, and a 0.5 represents an 
unchanged classification (Appendix C). 
 

4. Results & Discussion 
4.1 Analysis of Results 
4.1.1. Land Use Land Cover  
Unsupervised classifications for 2023 (Figure 2) were completed for six land cover classes with a Kappa 
statistic of 0.86. This indicates a good agreement with validation data and an accurate classification map 
(Appendix B). Upland forest, shrub, and grassland comprised the largest area of Rhode Island (40.7%), 
followed by developed, open space, and barren (38.7%), woody wetlands (11.7%), open water (4.5%), 
agriculture (3.8%), and non-woody wetlands (0.6%) (Figure 3). A similar land use pattern was observed when 
paralleled in Google Earth Engine (Appendix A).  
 

 
Figure 2. Land cover classification for 2023. 
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Figure 3. Land cover by percentage. 

 
4.1.2 Land Use Land Cover Change  
Based on NLCD data, the land use land cover change analysis for 2011 to 2021 revealed a decrease in non-
woody wetlands, agricultural fields, and forest. Meanwhile, woody wetlands, grasslands, barren, developed, 
and open water classes all experienced an increase in acreage during the same time (Figure 4). 
 

 
Figure 4. Net land use cover change between 2011 and 2021. 
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4.1.3 Forecasted Land Cover  
Our forecasted land use land cover maps indicate that that the non-woody wetlands will completely disappear 
by 2026 with this LULC type not reappearing in any projection (Figure 6). In the projections, non-woody 
wetlands are lost to woody wetlands, open water, and development. The loss of non-woody wetlands is likely 
a forecast modeling inaccuracy, because as of 2023, we know there are approximately 4,360 acres of non-
woody wetlands (Figure 3). Regardless, given concerns about sea level rise, nonwoody wetlands likely remains 
a priority for Audubon’s conservation efforts as they are threatened by climate change and are rare compared 
to most other LULC types in Rhode Island. 
 
By 2043, forest and woody wetlands show a decrease in acreage compared to 2023, while open water, 
development, barren, grassland, and agriculture all show an increase in acreage (Figure 5). Forests and woody 
wetlands are primarily displaced by forest clearing either as a forestry practice or as some kind of 
development. The overall trend can be observed at each 5.5-year projection (Figure 6, Appendix C). 

 
Figure 5. Net acreage and percentage change in LULC between 2023 and 2043. The bars show acreage on the 

primary y-axis and the points show percent change on the secondary y-axis. 
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Figure 6. Projected land cover maps 2026 – 2043. 

 

It is important to note that land class acreages between the 2023 unsupervised classification map and the 
forecasted maps could not be compared due to file formats; however, future work may address this issue by 
converting one format to another. The file formats needed by TerrSet affected the clipping extents of the 
projected images, resulting in inflated acreage, by including land outside of our study area. Although the land 
cover acreage amounts differ amongst the TerrSet and ArcGIS computed maps, the trends and accuracies are 
similar, lending credibility to both methods. The Weighted Normalized Likelihood (WNL) accuracy 
assessment showed the upper limit with moderately high agreement (i.e. likelihood of change occurrence) 
indicating that the projected LULC maps have a moderately high potential of being true future projections, 
given the driver variables (Appendix C). 
  
The accuracy assessment of the LULC change potential yielded the following observations: The highest class 
change potential accuracy was from open water to barren, at 0.88. The least accurate transition potential was 
from forest to woody wetland at 0.322. Open water change transition potentials were the most accurate, 
ranging from 0.795 (change to woody wetlands) to 0.88 (change to barren). Woody wetland transitions 
showed moderate accuracy, ranging from 0.61 (agriculture) to 0.78 (grassland), but class transitions to woody 
wetlands were consistently inaccurate. The apparent inaccuracy of changes to woody wetlands falls in line with 
the overall loss of woody wetlands, as it would be unlikely that certain land classes are changing to woody 
wetlands. Woody wetlands were mostly lost to grasslands, agriculture, and development.  
  
It is possible that non-woody wetlands were classified as woody wetlands, which would contribute to the 
complete loss of non-woody wetlands. We believe this also may have been a classification error when 
reclassifying the 2021 NLCD map. Non-woody wetlands are also quite rare across the state, so small changes 
may matter more for the rarely occurring classes. The class’s decline would be exacerbated by the further 
decline of woody wetlands, especially as one of the largest transitions of both these wetland classes was to 
development, which had an accuracy range of 0.546 (woody wetlands) to 0.739 (barren). 
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4.2 Feasibility for Partner Use 
4.2.1 ArcGIS and TerrSet  
This project's scope was modified throughout our work to accommodate time constraints and technology 
gaps. In terms of using GIS to conduct land cover analysis and classification, this objective was only partially 
feasible within the project timeframe, with only one of two dates of LULC maps created using the 
unsupervised classification approach. Due to this, the second objective of using GIS to create LULC maps 
and analyze LULC change for the two targeted dates was also not met as far as computing new LULC maps 
as inputs to the change map. As far as creating accurate LULC maps that contain an acceptable level of detail, 
this objective was partially fulfilled with our 2023 LULC map. However, also NLCD maps for 2011 and 2021 
were available and used to construct LULC change maps that were then used with TerrSet LCM to compute 
future LULC change maps. 
 
Our study's large geographical extent led to increased time spent analyzing the landscape. Creating a LULC 
map for an entire state meant we also had to understand and identify a wide variety of land uses and covers. 
An additional challenge with the state-wide extent was that all ancillary data needed to be state-wide at a 
minimum. In our work with Landsat imagery, we encountered cloud contamination and locally evident haze 
in many of the scenes, which are common to coastal areas. Haze along the southern coast of the Rhode Island 
in the May 2023 scene selected for deriving the LULC map likely contributed to the challenges the software 
had with differentiating certain LULC classes (e.g., non-woody wetland areas) in the unsupervised 
classification.  
 
At the project's outset, the goal was to create Landsat-based leaf-off and leaf-on LULC maps for each year. 
This method would have allowed us to integrate the two LULC classifications together into a holistic map, 
cherry-picking the most accurate landscape delineations from each into one map representing the entire year. 
Analysis of a leaf-off scene in addition to the leaf-on scene we chose would likely have enabled finer 
differentiation of forest types and woody vs. non-woody vegetation. Without the leaf-off LULC and 
additional analysis, we were compelled to consolidate all forest types, grassland and herbaceous areas, and 
shrub-scrub into one upland habitat class. We could have attempted to keep to our original nine landcover 
class schema but would have compromised the map’s accuracy. The 2023 LULC map that we produced is 
accurate compared to reference data and will be useful to the partner for showing areas of development 
versus other kinds of habitat overall. 
 
TerrSet’s Land Change Modeler is a feasible option for projecting future LULC change, but comparison 
between other methods in near impossible as projection validity requires an existing map of that year, which 
cannot be done if the year has not come to pass yet. With more time, projecting our LULC from NLCD data 
to 2023 could reasonably allow for a comparison to an ArcPro-generated map, provided the file types have 
been converted to TerrSet-compatible files and the spatial extent of both images matches exactly. Still, TerrSet 
provides a useful tool for ecological forecasting and successfully generated forecasts of future Rhode Island 
LULC maps over the next two decades. 
  
We provided methodologies for Audubon to conduct their own LULC analyses using Earth observations. 
Data acquisition and processing can be done through open-source software like USGS Earth Explorer and 
QGIS, but making LULC change projections in TerrSet is not feasible with the method used in the project 
unless Audubon pays for the yearly subscription. Audubon also now has the projected LULC maps to 2043, 
so they have land change data, and it may be unnecessary for the organization to purchase a TerrSet service if 
the maps from this project are deemed sufficient. 
 
4.2.2. Google Earth Engine (Appendix A) 
We paralleled the process for creating a land use land cover map in Google Earth Engine (GEE), using 
supervised classification. The GEE method is contrast to the ArcGIS unsupervised classification method also 
employed in the project. We found GEE to be useful in accessing and processing satellite imagery, making it 
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feasible for computing and analyzing large-scale land use changes, with free software. GEE provided access to 
vast geospatial datasets and computational resources required for image processing and analysis. Additionally, 
GEE has a built-in Random Forest classifier which is a widely used machine learning algorithm suitable for 
deriving supervised land cover classification. GEE also has unsupervised classification tools. 
  
Despite its feasibility, there are a few possible errors that might be encountered during execution. One 
potential error source is data availability and quality. The Landsat imagery used for classification may suffer 
from cloud cover or sensor errors, leading to inaccuracies in land cover classification. Moreover, mislabeling 
of training data or inaccuracies in the reference data used for accuracy assessment can introduce errors in the 
classification results. Additionally, errors may arise from parameter settings, such as the number of decision 
trees in the Random Forest classifier or the scale used for reducing regions, affecting the classification 
accuracy. The availability of reference data for training can be problematic for supervised classifications when 
there are several targeted classes and the image analysts are not familiar in a firsthand way with the study area. 
For this project, the use of NLCD data was employed for selecting training samples, though it should be 
noted that the NLDC LULC maps can have classification errors as well. 
  
There are uncertainties associated with LULC classification process and the interpretation of related mapping 
results. Variability in land cover characteristics within the study area, such as spectral similarity between 
different land cover types or temporal changes not captured by the selected dates of Landsat imagery, may 
lead to uncertainties in classification results. Furthermore, assumptions made during the analysis, such as the 
consistency of land cover transitions over time or the suitability of the selected classification algorithm and 
parameters for the study area, contribute to uncertainties in the final land use maps. Additionally, the accuracy 
assessment method used in one’s code, based on comparing classified maps with reference data, may not fully 
capture the complexity of land cover dynamics and change processes, leading to uncertainties in accuracy 
estimates. 
 
4.3 Future Recommendations 
Future work could include creating a historic LULC map from available 2013 Landsat data in conjunction 
with unsupervised classification methods. This was tried in the current project using GEE supervised 
classification but was not completed using the ArcGIS-based unsupervised classification method. The historic 
LULC map for 2013 based on unsupervised classification could then be used to generate forecasted maps, 
rather than using NLCD data. This would likely provide a more detailed and accurate projection of future 
LULC change, especially considering the loss of non-woody wetlands in our current projections. Continued 
work could also incorporate drought and sea-rise data into the projections since climate change is an ongoing 
ecological issue. 
 
When completing the unsupervised classification, we lumped together all forests, scrub/shrub, and grassland 
habitats because they were hard to distinguish with the Iso Cluster tool and available time to do classification 
refinement was limited. Given the ecological and environmental significance of forests, we would recommend 
trying to distinguish different forest types (deciduous, mixed, scrub/shrub) and grasslands. By employing 
more advanced remote sensing techniques, using multiple seasons of Landsat data, and incorporating ancillary 
data sources such as vegetation indices and topographic variables, we can gain deeper insights into the 
composition and distribution of these different habitats. Moreover, it is also essential to refine the 
classification process to accurately tease out industrial developments that may overlap with certain land cover 
classes. For example, distinguishing features such as maintained power transmission right of ways could 
provide a more nuanced understanding of land use dynamics, particularly in areas undergoing rapid 
urbanization or industrialization. 
 

5. Conclusions 
General trends in land cover change between 2011 and 2021 showed a decrease primarily in forests. We also 
observed decreases in non-woody wetlands in 2021, however we now believe these non-woody wetlands may 
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have been miscategorized or inadvertently grouped into woody wetlands. We know from the National 
Wetland Inventory that there are non-woody wetlands present in Rhode Island as of 2023 and such wetlands 
also typically occurred on the 2021 NLCD data. Projected land cover changes to the year 2043 show a similar 
trend where forests and wetlands continue to decline, but this assumes that change trajectory continues at the 
same rate into some future specified date. The loss of forest habitats appears to be largely related to 
anthropogenic disturbances, such as increased urban development of buildings, leisure spaces (e.g. golf 
courses, open parks), and possibly also agricultural expansion. Low lying coastal marshes may also be 
vulnerable to sea level rise and severe hurricanes. The decrease of forest and wetlands has occurred across 
many areas of the United States (Cohen et al. 2016; Davidson 2016).  
 
Although we had to reduce the specificity of our land cover classifications to six classes, we are hopeful the 
2023 LULC map computed with this project will still be a valuable resource for Audubon and other 
conservation groups, as an aid in making decisions about land acquisition. Audubon can use this data to help 
assess and plan targeted land conservation areas to save the current habitat or protect the habitats that will 
arise. Audubon is also able to conduct further land classification analyses using open-source software, plus 
current and historic Landsat data. The partner knows what needs to be addressed to continue follow-on work 
into a second DEVELOP term if they should choose. 
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7. Glossary 
C-CAP – NOAA’s Coastal Change Analysis Program 
CDL – USDA Cropland Data Layer 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
GIS – Geographic Information System 
LULC – Land Use Land Cover 
LULCC – Land Use Land Cover Change 
MSI – Moisture Stress Index 
NAIP – National Agriculture Imagery Program 
NDVI – Normalized Difference Vegetation Index 
NOAA – National Oceanic and Atmospheric Administration 
NWI – National Wetland Inventory 
OLI-2 – Operational Land Imager 2, a sensor found on Landsat 9 satellite 
Remote sensing – the acquiring of information from a distance 
USDA – United States Department of Agriculture 
USFWS – United States Fish and Wildlife Service 
USGS – United Stated Geological Survey 
WNL –Weighted Normalized Likelihood 
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9. Appendices 
Appendix A. Google Earth Engine 

9A.1 Data Acquisition  
The data acquisition process on Google Earth Engine involved locating the appropriate satellite imagery and 
ancillary datasets to support habitat monitoring and land cover change analysis in Rhode Island. First, the US 
Census TIGER/Line dataset was loaded to delineate the boundaries of Rhode Island. We then downloaded 
Collection-2 Level-2 Landsat 8 Operational Land Imager (OLI) and Landsat 9 OLI-2 imagery for the years 
2013 and 2023. The collection-2 level-2 data uses surface reflectance algorithms correction for temporally, 
spatially, and spectrally varying scattering and absorbing effects of atmospheric gases, aerosols, and water 
vapor. Landsat data sets from May 02, 2013 and November 30, 2023 were used as input to land cover 
classifications (Table 1). These dates were selected based on having acceptable low to no cloud-cover and 
were for a time of year in which land cover types are distinct. These two scenes represent ‘leaf-on’ and ‘leaf-
off’ conditions accounting for fall and spring imagery, respectively.  Imagery from both seasons helped to 
best distinguish land cover classes by accounting for their seasonal variation. Ancillary raster datasets were 
obtained for each year based on availability and included the USGS National Land Cover Database (NLCD), 
Historic and current LULC maps, such as those provided gathered from the NLCD.   
 
9A.2 Data Processing  
For each Landsat scene, we selected Landsat bands 2–7 Blue, Green, Red, Near Infrared (NIR), Short-wave 
Infrared 1 (SWIR1), and Short-wave Infrared 2 (SWIR2). The TOA function converted the raw digital 
numbers in Landsat imagery to top-of-atmosphere (TOA) reflectance, which corrected atmospheric effects 
and converted the bands to surface reflectance.    
 
Training data for land use classification was generated by manually selecting 30 representative points across 
for each of the eight land use classes within Rhode Island. These points were categorized into these distinct 
land use land cover types: Developed, Agriculture, Grassland, Shrubs, Forest, Woody Wetland, Non-Woody 
Wetland, and Open Water. Each point was associated with a numeric code representing its corresponding 
land use class.  

 
To facilitate classification, Landsat image pixels were matched with training data points using a reduction 
process. The Landsat image's spectral values were extracted at the locations of the training points, and default 
values were assigned for missing bands. This step ensured uniformity in input features for subsequent 
classification.  

 
A Random Forest classifier was then employed for land use classification, trained using the Landsat spectral 
bands (B2 (as in Band 2), B3, B4, B5, B6, B7) and the associated land use labels. The classifier utilized the 
training data to learn patterns in spectral signatures corresponding to different land use classes.  
 
The Landsat imageries from 2013 and 2023 were classified using the trained Random Forest classifier, 
assigning each pixel to one of the eight land use classes. The resulting classified 2013 (Figure A1, A2) and 
2023 (Figure A3, A4) images were visualized using a predefined color palette to distinguish between different 
land use types.  

https://doi.org/10.3390/rs10121910
https://doi.org/10.3389/fenvs.2020.00021
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Finally, the classified images were exported as GeoTIFFs for further accuracy assessment analyses. These 
images contained spatial information, enabling subsequent geospatial processing and integration with other 
ancillary datasets.  
 

 
Figure A1. 2013 LULC Map created in Google Earth Engine. 
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Figure A2. 2013 LULC Landcovers. 
 

 
Figure A3. 2023 LULC Map created in Google Earth Engine. 
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Figure A4. 2023 LULC Landcovers. 

 

 
Figure A5. 2013 and 2023 LULC Maps Compared. 

 
Data Analysis  
To assess accuracy of the 2023 supervised land classification LULC map, we conducted an accuracy 
assessment using a confusion matrix. Firstly, a reference dataset, the NLCD (National Land Cover Database) 
2021, was loaded to compare against the 2023 LULC map. The NLCD data was sampled at a scale of 30 
meters and within the same region of interest (ROI) as the 2023 map. The geometry and projection of the 
2023 map was reprojected to match the NLCD projection.  
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Next, 240 sample points were extracted from both NLCD 2021 and the same points were extracted from the 
2023 map within the ROI i.e Rhode Island. These samples were combined into one Feature Collection and a 
tolerance value was defined to allow for matching between land cover classes. A tolerance threshold was set 
to account for potential discrepancies between the NLCD classes and the 2023 classes. The accuracy 
assessment calculates the accuracy for each sample point by comparing the assigned land cover class from 
NLCD with the 2023 land cover class. Points with matching classes within the defined tolerance were 
considered correctly classified.  
 
The accuracy calculation was based on comparing the absolute difference between the NLCD and 2023 land 
cover classes to the defined tolerance. The resulting accuracies were filtered to remove null values and then 
used to construct a confusion matrix. The diagonal elements of the confusion matrix represent the correct 
classifications.  
 
Overall accuracy (i.e., agreement) of the derived LULC map was calculated by dividing the number of correct 
classifications by the total number of classifications. This generated an overall accuracy value of 81.43 % 
which meets the minimum accuracy requirement. Next, we calculated accuracy metrics for each land use class 
by comparing the assigned class labels from the classification results with those from the NLCD 2021 dataset. 
We employed a confusion matrix approach to quantify correct classifications for each land use class. This 
generated accuracy percentages for each land use category as follows: Developed (92.4%), Agriculture 
(80.25%), Grasslands (80.64%), Shrubs (67.73%), Forests (84.38%), Woody Wetlands (85.19%), Non-Woody 
Wetlands (40.47%), and Open Water (98.92%) (Table A1). The accuracy calculated here was the producer's 
accuracy since we measured the probability that a pixel classified as a certain class on the classified map is 
correctly classified with respect to the 2021 NLCD reference data.  
 
Table A1 
Classifier accuracy assessment for 2023 Google Earth Engine LULC map. 

Accuracy Assessment 

Agriculture 80.25% 

Developed 92.40% 

Forests 84.38% 

Grassland 80.64% 

Non-woody Wetland 40.47% 

Open Water 98.92% 

Shrubs 67.73% 

Woody Wetland 85.19% 

Overall 81.43% 
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Appendix B. Confusion Matrix for 2023 LULC Map 

Table B1 
Confusion matrix for 2023 Unsupervised land classification map. 

Validation Data  

Classified 
Data 

 Water 
Developed 

/barren 
Agricultural 

Upland 
forests/ 
shrub/ 

grasslands 

Woody 
wetlands 

Nonwoody 
wetlands 

Total 

Water 126 0 0 0 0 0 126 
Developed 

/Barren 
2 105 3 23 1 1 135 

Agricultural 0 0 15 1 0 0 16 
Upland 
forests/ 
shrub/ 

grasslands 

3 11 0 159 1 2 176 

Woody 
wetlands 

0 2 0 7 35 0 44 

Nonwoody 
wetlands 

1 0 0 3 3 3 10 

 Total 132 118 18 193 40 6 507 

 
Accuracy 

(K) 
0.955 0.889 0.833 0.823 0.875 0.5  

 
Total 

Accuracy 
(K) 

0.875       
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Appendix C. Land Use Projection Data 

Table C1 
Total acreage per class for each year. 2011 and 2021 were NLCD classifications, the rest of the numbers were projected values  
using TerrSet Land Change Modeler. 

 2011 2021 2023 2026 2032 2037 2043 
Difference 

(2043 – 
2023) 

Open Water 345095.40 346742.17 346855.55 346966.97 347191.41 347418.04 347643.71 788.17 

Developed/ 
Open Space 

303243.69 307342.41 308067.52 309077.94 310850.07 312639.76 314427.71 6360.19 

Barren 8680.37 9122.54 9196.66 9329.61 9537.59 9746.05 9956.13 759.46 

Forest/ 
Scrub 
Shrub 

Upland 

499942.78 493313.38 492054.15 490797.11 488259.23 485693.54 483121.54 -8932.60 

Grassland/ 
Herbaceous 

(Upland) 
18514.63 22593.44 23078.00 23245.18 23896.93 24547.41 25197.36 2119.36 

Agricultural 
Land 

41165.67 41041.83 41045.09 41173.29 41294.60 41415.91 41532.30 487.21 

Woody 
Wetland 

144162.28 145059.34 144918.15 144625.00 144185.27 143754.39 143336.35 -1581.80 

Non-
Woody 

Wetland 
4410.30 0* 0* 0* 0* 0* 0* 0* 

Total 1365215.11 1365215.11 1365215.11 1365215.11 1365215.11 1365215.11 1365215.11  

*Non-woody wetlands completely disappeared in the 2021 NLCD reclassification and the projections. We 

believe this was a processing error and we did not have a chance to explore where the error originated.  

Table C2 
Weighted Normalized Likelihood (WNL) statistics for forecasted LULC maps. 

Transition Accuracy Transition Accuracy Transition Accuracy Transition Accuracy 

Open 
Water to 

Developed/ 
Open Space 

0.81 

Developed/ 
Open Space 

to Open 
Water 

0.686 
Barren to 

Open Water 
0.789 

Forest/ 
Scrub 
Shrub 

Upland to 
Open 
Water 

0.64 

Open 
Water to 
Barren 

0.88 
Developed/ 
Open Space 

to Barren 
0.739 

Barren to 
Developed/ 
Open Space 

0.842 

Forest/ 
Scrub 
Shrub 

Upland to 
Developed/ 
Open Space 

0.716 

Open 
Water to 
Forest/ 
Scrub 
Shrub 

Upland 

0.812 

Developed/ 
Open Space 
to Forest/ 

Scrub 
Shrub 

Upland 

0.597 

Barren to 
Forest/ 

Scrub Shrub 
Upland 

0.343 

Forest/ 
Scrub 
Shrub 

Upland to 
Barren 

0.671 

Open 
Water to 

0.819 
Developed/ 
Open Space 

0.593 
Barren to 

Grassland/ 
0.468 

Forest/ 
Scrub 

0.737 
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Transition Accuracy Transition Accuracy Transition Accuracy Transition Accuracy 

Grassland/ 
Herbaceous 

(Upland) 

to 
Grassland/ 
Herbaceous 

(Upland) 

Herbaceous 
(Upland) 

Shrub 
Upland to 
Grassland/ 
Herbaceous 

(Upland) 

Open 
Water to 

Agricultural 
Land 

0.8 

Developed/ 
Open Space 

to 
Agricultural 

Land 

0.622 
Barren to 

Agricultural 
Land 

0.399 

Forest/ 
Scrub 
Shrub 

Upland to 
Agricultural 

Land 

0.493 

Open 
Water to 
Woody 
Wetland 

0.795 

Developed/ 
Open Space 
to Woody 
Wetland 

0.546 
Barren to 
Woody 
Wetland 

0.43 

Forest/ 
Scrub 
Shrub 

Upland to 
Woody 
Wetland 

0.322 

Grassland/ 
Herbaceous 
(Upland) to 

Open 
Water 

0.643 

Agricultural 
Land to 
Open 
Water 

0.632 
Woody 

Wetland to 
Open Water 

0.644 

Grassland/ 
Herbaceous 
(Upland) to 
Developed/ 
Open Space 

0.494 

Agricultural 
Land to 

Developed/ 
Open Space 

0.747 

Woody 
Wetland to 
Developed/ 
Open Space 

0.685 

Grassland/ 
Herbaceous 
(Upland) to 

Barren 

0.589 
Agricultural 

Land to 
Barren 

0.77 

Woody 
Wetland to 

Barren 
0.68 

Grassland/ 
Herbaceous 
(Upland) to 

Forest/ 
Scrub 
Shrub 

Upland 

0.429 

Agricultural 
Land to 
Forest/ 

Scrub Shrub 
Upland 

0.577 

Woody 
Wetland to 

Forest/ 
Scrub 
Shrub 

Upland 

0.73 

Grassland/ 
Herbaceous 
(Upland) to 
Agricultural 

Land 

0.503 

Agricultural 
Land to 

Grassland/ 
Herbaceous 

(Upland) 

0.735 

Woody 
Wetland to 
Grassland/ 
Herbaceous 

(Upland) 

0.752 

Woody 
Wetland to 
Agricultural 

Land 

0.61 

Grassland/ 
Herbaceous 
(Upland) to 

Woody 
Wetland 

0.384 

Agricultural 
Land to 
Woody 
Wetland 

0.384 NA NA NA NA 

 


	1. Abstract
	2. Introduction
	2.1 Background Information
	2.3 Project Partners & Project Objectives

	3. Methodology
	3.1 Data Acquisition
	3.2 Data Processing

	4. Results & Discussion
	4.1 Analysis of Results
	4.1.1. Land Use Land Cover
	4.1.2 Land Use Land Cover Change
	4.1.3 Forecasted Land Cover

	4.2 Feasibility for Partner Use
	4.2.1 ArcGIS and TerrSet

	4.3 Future Recommendations

	5. Conclusions
	6. Acknowledgements
	7. Glossary
	8. References
	9. Appendices
	Appendix A. Google Earth Engine
	9A.1 Data Acquisition

	Appendix B. Confusion Matrix for 2023 LULC Map
	Appendix C. Land Use Projection Data


