

National Aeronautics and Space Administration

Southeast Coast Ecological Conservation

Investigating the Development of Ghost Forests Due to Saltwater Intrusion along the Savannah River, Georgia Coastline of the United States

Emma Cheriegate • Eleri Griffiths • Quintin Munoz • Vivienne von Welczeck

California – JPL | Summer 2023

A N N I V E R S A R Y

Background

Image Credit: NOAA

- ↑ Saltwater intrusion
 (SWI) into freshwater systems
 - Ghost forest formation

•

Natural and anthropogenic drivers intensifying SWI

Community Concerns

- Loss of biodiversity
- Inhibited carbon sequestration
- Declining drinking water quality and supply
- Dangerous storm surges
- Climate change adaptation strategies

Image Credit: Dr. William Conner, USGS

Study Area & Period

- Lower Savannah River, Georgia
 - HUC10 Watershed
 - Savannah National Wildlife Refuge
- Time Frame: Growing Season of 2013 2023 (March – Sept)

Image Credit: U.S. Fish & Wildlife Service. Bald cypress in bottomland hardwood forest at Savannah National Wildlife Refuge.

Objectives

Investigate Changes

in sea level rise (SLR) and vegetative health

Synthesize & Analyze trends in saltwater intrusion (SWI)

Validate and Correlate

NASA Earth observations (EO) with in-situ (field-derived) data

Project Partners

 Southeast Regional Climate Hub

- Wetland and Aquatic Research Center (WARC)
- Florence Bascom Geoscience Center (FBGC)

Department of

Earth Observations (EOs)

Methodology – NDVI Parallel Processing

Results - NDVI Time Series (Landsat 8)

Monthly Mean NDVI 2013 – 2023 1.00 June - August 0.75 Monthly Mean NDVI Site 0.50 - 2 3 -0-0.25 0.00 2014 2015 2016 2017 2023 2013 2018 2019 2020 2021 2022

Results - NDVI Parallel Processing (Landsat 8)

 Δ NDVI = March 2023 – March 2013

Results – NDVI Parallel Processing (Planet)

April 2023 Planet NDVI for Overall Study Site

April 2013 Planet NDVI for Overall Study Site

Results – NDVI Parallel Processing (Planet)

Plot Maps

(April 2023)

Methodology – Random Forest Land Classification

Results - Land Cover Classification (Landsat 8)

Growing Season Composite = May to Sept 2013

Growing Season Composite = May to Sept 2023

Results – Land Cover Classification

Land Cover Classification Time Series 2013 – 2023

Results – In Situ Data

Results – Long Term Trends

Limitations and Uncertainties

- Landsat 8 NDVI: Cloud coverage
- Planet Imagery: API accessibility
- Land cover classification:
 - # of training points
 - Temporal variation
 - Mixed pixels/resolution limitations
 - Edge effects
- Salinity: Data availability

Conclusions

• Landsat 8 NDVI values decreased over time while Planet NDVI values increased, potentially due to varying spatial resolutions

- Marshes were stable and dominant over time, possibly due to ecological saline adaptation
- Evergreen areas experienced the highest fluctuations and increased over time, leading to potential ecological effects

Future Work

Image Credit: USDA Forest Service

- \uparrow temporal/spatial resolution
- ↑ Scale & number of variables
- Investigate other drivers of SWI

Attempt different classification algorithms, \uparrow # of training points

↑ porewater salinity data & sites

Acknowledgments

Partners

United States Department of Agriculture

- Dr. Steve McNulty, Southeast Regional Climate Hub
- Michael Gavazzi, Southeast Regional Climate Hub

United States Geological Survey

- Dr. Ken Krauss, Wetland and Aquatic Research Center (WARC)
- Dr. Gregory Noe, Florence Bascom Geoscience Center (FBGC)

Georgia Southern University

- Dr. Georgianne Moore, Chair Biology
- Dr. CJ Pell, postdoc

Science Advisors

Dr. Kyra Adams

 NASA Jet Propulsion Laboratory, California Institute of Technology

Dr. Elliott White Jr.

 Stanford Woods Institute for the Environment

Benjamin Holt

• NASA Jet Propulsion Laboratory, California Institute of Technology

Fellow

<u>Michael Pazmino</u>

• NASA DEVELOP - JPL

This work utilized data made available through the NASA Commercial Smallsat Data Acquisition (CSDA) Program.

This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations.