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Image Credit: Bernardo62

Background

• Natural and anthropogenic 
drivers intensifying SWI

Image Credit: NOAA

• ↑ Saltwater intrusion 
(SWI) into freshwater systems
• Ghost forest formation



Community Concerns

Image Credit: Dr. William Conner, USGS

• Loss of biodiversity
• Inhibited carbon sequestration
• Declining drinking water quality 

and supply
• Dangerous storm surges
• Climate change adaptation 

strategies



Image Credit: Bernardo62

Study Area & Period
• Lower Savannah River, Georgia

• HUC10 Watershed
• Savannah National Wildlife Refuge

• Time Frame: Growing Season of 2013 – 
2023 (March – Sept)

Image Credit: U.S. Fish & Wildlife Service. Bald cypress in 
bottomland hardwood forest at Savannah 
National Wildlife Refuge.
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Synthesize & Analyze
trends in saltwater intrusion (SWI)

Investigate Changes
in sea level rise (SLR) and vegetative 
health

Validate and Correlate
NASA Earth observations (EO) with in-situ 
(field-derived) data

Objectives



Project Partners

• Wetland and Aquatic 
Research Center 
(WARC)

• Florence Bascom 
Geoscience Center 
(FBGC)

• Southeast Regional 
Climate Hub

• Department of 
Biology, Georgia 
Southern 
University



Earth Observations (EOs)

Landsat 7 ETM+ Landsat 8 OLI Planet Scope Rapid Eye 
and Dove

Land Classification NDVI Parallel Processing

Image Credit: NASA, Planet Labs PBC



Methodology – NDVI Parallel Processing

Landsat 8 OLI
Filter by date and ROI

Water Mask

Inputs Processing

Cloud Mask

Analysis

PlanetScope 
Dove

Filter by date and ROI
Water Mask

ee.ReducerMean

Output

12 Month 
Mean NDVI

ee.ReducerMean

Mean NDVI 
per month



Results – NDVI Time Series (Landsat 8)
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Results – NDVI Parallel Processing (Landsat 8)

NDVI Map

Δ NDVI = March 2023 – March 2013Δ NDVI = June 2022 – June 2014

NDVI Map

Images Credit: Maxar, ESRI
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Results – NDVI Parallel Processing (Planet)
Δ NDVI = April 2023 – April 2013

April 2013 
Planet NDVI 
for Overall 
Study Site

April 2023
Planet NDVI
for Overall
Study Site

Includes copyrighted material of Planet Labs PBC. All rights reserved.
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Results – NDVI Parallel Processing (Planet)
(2013 – 2015 & 2023) Planet NDVI Values for USGS Plot Sites

Site 1

Site 2

Site 3

Site 4

Planet NDVI 
Plot Maps 

for USGS Sites
(April 2023) Planet NDVI Plot Site Difference Calculation 

(2023) NDVI – av mean (2013,2014,2015) NDVI

Includes copyrighted material of Planet Labs PBC. All rights reserved.
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Seasonal 
composite 

(May – Sept)

Methodology – Random Forest Land Classification

Water Mask
Cloud Mask
Urban Mask Delineate 

training 
points

Landsat 8 OLI

Inputs Processing Analysis Output

Random 
Forest Land 

Cover
Classification

10 land cover 
images (1 per 

year)



Results – Land Cover Classification (Landsat 8)
Growing Season Composite = May to Sept 2013 Growing Season Composite = May to Sept 2023

2013 Land Cover Type
Marsh

Unhealthy Vegetation

Healthy Vegetation

Evergreen
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Results – Land Cover Classification
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Results – In Situ Data

USGS Porewater Salinity Measurements 
2023 – 2021

Sea Level Rise Trend 2013 – 2023
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Results – Long Term Trends

USGS Porewater Salinity Measurements 
2013 – 2021

Monthly Mean NDVI 2013 – 2023
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• Landsat 8 NDVI: Cloud 
coverage

• Planet Imagery: API 
accessibility

• Land cover classification:
• # of training points
• Temporal variation
• Mixed pixels/resolution

limitations
• Edge effects

• Salinity: Data availability

Limitations and 
Uncertainties

Image Credit: Maxar, ESRI



Conclusions

• Marshes were stable and dominant over time, possibly due to 
ecological saline adaptation

• Evergreen areas experienced the highest fluctuations and 
increased over time, leading to potential ecological effects

• Landsat 8 NDVI values decreased over time while Planet NDVI 
values increased, potentially due to varying spatial resolutions

• Salinity levels were highest at the southernmost study sites closest 
to the coast

• As salinity increased, NDVI decreased



Future Work

Image Credit: USDA Forest Service

• ↑ porewater salinity data & sites 

• ↑ temporal/spatial resolution
• ↑ Scale & number of variables
• Investigate other drivers of SWI

• Attempt different classification 
algorithms, ↑ # of training points



This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, 
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations. 
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