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[bookmark: _GoBack]ABSTRACT

[1] Understanding the relationship between wildfire potential and soil moisture in the United States has been difficult to assess, with limited ability to determine areas that are at high risk. This limitation is largely due to complex environmental factors at play and the lack of necessary remotely-sensed products. Drought conditions and accompanying low Fuel Moisture Content (FMC) have historically led to disastrous wildfire outbreaks causing economic loss, property damage, and environmental degradation. Thus, developing a programmed toolset to assess the relationship between soil moisture—which contributes greatly to FMC—and fire potential, can aid in determining overall wildfire risk. To properly evaluate these parameters, we used data assimilated from the Gravity Recovery and Climate Experiment (GRACE) and data from the Fire Program Analysis Fire-Occurrence Database (FPA FOD) to produce annual wildfire probability and predicted burned area maps at a 0.25 degree resolution for the contiguous United States. Assessment of retrodictive maps compared to the mapped FPA FOD fire data exhibits strong alignment for earlier years, proving the validity of our methodology. Decreased alignment in later years, as more extreme wildfires occur, revealed the need to incorporate more GRACE-derived water parameters, MODIS vegetation indices, and other environmental datasets to further refine the algorithm for fire risk and potential. These products will allow for assessment at a national-scale for early fire management by providing planners and responders with a predictive tool to better employ early decision-support to areas of high risk for each region’s annual fire season.
 
1. INTRODUCTION
 
[2] Wildfires across the United States have increasingly become larger and more frequent in the last several decades. Trends contributing to both an increase in the number of wildfires and burned area correlate with increased drought severity, causing severe economic loss, environmental degradation, and property damage [Dennison et al. 2014, Morton et al. 2003].  Wildfires are typically uncontrolled fires that occur in areas of combustible vegetation, depending on vegetation type. In the contiguous United States (Figure 1), 90% of wildfires are caused by humans, yet, one of the largest contributing factors to wildfire danger is fuel moisture content (FMC), a measure that when limited contributes to fire severity in a given area [Verbesselt et al. 2002].  Low FMC indicates higher fire risk as well as higher potential fire severity, or the degree of environmental change caused by a fire, due to plants being more resistant to fire when containing more moisture.  However, drought severity indices generally lack objective soil moisture, root zone moisture, and groundwater conditions while remotely sensed FMC products are largely unavailable at large scales [Houborg et al. 2012]. From 2003 to 2013, wildfires have contributed to a yearly average cost of $2 billion dollars per event in the western United States (https://www.ncdc.noaa.gov/billions/) with rising trends brought by increased drought severity. However, drought severity indices generally lack objective soil moisture, root zone moisture, and groundwater conditions and past attempts to remotely sense FMC have fallen short due to fuel being characteristically close to the ground and out of range for most sensors [Houborg et al. 2012].

[3] Launched in 2002, NASA’s Gravity Recovery and Climate Experiment (GRACE) are made up of a pair of identical Earth-observing satellites that measure Earth’s gravity at an altitude of ~500 km. GRACE is unique in its ability to derive water stored at all levels and enables reliable detection of spatio-temporal variations in total terrestrial water storage (TWS) [Houborg et al. 2010, Houborg et al. 2012]. The coarse resolution GRACE terrestrial water storage can then be spatially and temporally disaggregated and vertically decomposed into different water content components [Houborg et al. 2010].  Estimates of terrestrial water storage in the United States are crucial for predicting climate change, weather, and natural hazards, especially wildfires [Tapley et al. 2004]. Soil moisture is of particular importance for estimating fire risk and potential through FMC which has previously been difficult to assess with remotely sensed measurements [Tapley et al. 2004].
 
[4] This project thus analyzed the relationships between GRACE-derived soil moisture and wildfire occurrence and severity. In doing so, this established the potential for predictive capability of GRACE assimilated data products by determining fire risk and potential resulting from seasonal soil moisture conditions. Building upon these processes, the project further investigated those relationships by examining various spatial and temporal characteristics. These included investigating the modeled differences between various land cover types as well as the responses in fire potential to deviations from average moisture patterns. This methodology, in turn, can be used for directing on-the-ground preparedness, mitigation, and response efforts during fire seasons. By proving the feasibility of this approach, this study further established the need to refine the modeling process and results through the incorporation of other Earth observation datasets to more accurately assess fire risk and potential in the United States.
 
2. METHODOLOGY

2.1  DATA

[5] By assimilating GRACE data along with other environmental variables into the Catchment Land Surface Model, NASA’s Terrestrial Hydrology Program produced assimilated datasets for terrestrial water storage, root zone moisture content, surface soil moisture content and more at a refined resolution of 0.25 degrees [Houborg et al. 2012, Zaitchik et al. 2008]. This dataset provided our study with monthly soil moisture for the contiguous United States from January 2003 through December 2013. These data could then be processed into the average January-April average surface soil moisture value of each year, as these are the months that pertain to the western portion of the United States’ fire season [Westerling et al. 2003]. 
	
[6] The USDA Forest Service’s Fire Program Analysis Fire-Occurrence database (FPA FOD) is a comprehensive geospatial database of wildfires in the United States from 1992 to 2013. It includes 1.73 million geo-referenced wildfire records, representing a total of 126 million acres burned during the 22-year period [Short 2015]. It also contains vital information for each of these fires, including date, cause, fire size, fire class, burned area, and coordinates.  This data was imported into a geographic information system and processed into two separate raster datasets that matched the spatial and temporal resolution of the GRACE derived soil moisture data. The first dataset aggregated the annual number of fires in each 0.25 x 0.25 degree cell for May through April of the following year, while the second summed the total burned area (in acres) for each cell in that timeframe.

[7] The final dataset used in this study was the USGS’ National Land Cover Database 2011 (NLCD) [Homer et al. 2015]. This dataset maps land cover and land use across the United States at a 30 meter resolution. The NLCD data was first reclassified for generalization and resampled to the same spatial extent and resolution as our two other datasets. This allowed each grid cell to have a unique land cover classifier, which could then be programmatically used to extract values and characterize each relevant vegetation type’s relationship between soil moisture and wildfire.

2.2 PROCESSING

[8] In order to first establish the validity of analyzing relationship between the FPA FOD wildfire dataset with the GRACE-derived soil moisture data, we calculated Pearson correlation coefficients for the time series of each grid cell. The output map seen in Figure 2 shows high correlations over much of the US, ranging from -0.98 to 0.94. Values close to -1 indicate a strong correlation between low January-April soil moisture and burned area in the following year, while values approaching 1 indicate higher burned area following higher average soil moisture. These high correlation values suggest a strong linear relationship between the two datasets in much of the country, allowing the study to move forward with algorithm development to better assess fire risk.

[9] With the aforementioned datasets all processed in spatially and temporally matching arrays, the predictive algorithm could be developed in Python to assess wildfire probability and predicted burned area. The first step in algorithm development was to disaggregate the fire data by size class. Class G fires, the largest classification at over 5000 acres burned, are of greatest interest to this study as they offer the clearest indication of high fire severity and potential [Short 2015]. With annual January – April soil moisture and both annual class G fire frequency and burned area 3-dimensional arrays processed, each burned area and fire frequency value was plotted against its corresponding soil moisture value. The land cover array could then be used to disaggregate these plots for each relevant vegetation type. The last step in this process was to bin the data by soil moisture ranges, giving us average burned area and number of fires by soil moisture value. These data, then, revealed the unique relationship in each land cover class between wildfire and soil moisture, as exemplified in Figures 3 and 4 for class G fires in evergreen forest land. These resulting values were compiled as look-up tables to be referenced for mapping fire probability and predicted burned area.
	
[10] The final equations for calculating fire probability and predicted burned area could then be applied by referencing the look-up table corresponding to each land cover type for class G fires. Probability (Equation 1) is calculated by multiplying each cell’s soil moisture value by the corresponding land cover type’s average fire frequency value for the bin that soil moisture value falls in. Burned area (Equation 2), then, is estimated by multiplying the calculated probability by the average burned area value for the bin that each cell’s soil moisture value belongs to. 

				(1)
 		(2)

3. RESULTS

[11] Figures 5 and 6 are examples of our results, which retrodict the May 2003 – April 2004 fire year. Figure 5 shows the probability of a class G fire occurring in that year, scaled from 0 to 5%, based on the preceding soil moisture. Figure 6, then, shows predicted burned area by class G fire. To validate these results then, we created summary statistics for each land cover class, summing up the total number of fires predicted by the algorithm for that fire season and the total predicted burned area. Figure 7 shows the predicted and actual number of class G fires that occurred in each vegetation type, while Figure 8 shows the predicted and actual burned area by class G fires in each type.

4. DISCUSSION

[12] Figures 7 and 8 show that in our 2003 – 2004 case study, the predictive algorithm performed very well. The values for both predicted fire frequency and burned area line up with the actual data for this period in the evergreen, deciduous, and wetland classes. Meanwhile, grassland and shrubland appears to be overly sensitive in our model. This is likely due, in part, to the 2011 NLCD’s widespread classification of shrubland in actual desert land where fires are infrequent [Homer et al. 2015]. Additionally, both grassland and shrubland are more sensitive to drought conditions, increasing their fire risk, as borne out in their binned average values for burned area and fire frequency with decreasing January-April soil moisture compared to the other investigated classes. Because of this increased sensitivity relative to the other vegetation types, it is likely that the more frequent extreme drought conditions present in the later parts of our study period brought the average predicted value up drastically. This then resulted in overestimation of burned area in shrubland and grassland for the 2003-2004 case study.
 
[13] It should also be noted that the predictive maps are not intended to offer hard predictions of fire severity, but rather an assessment of fire risk and potential based on seasonal soil moisture. Despite the promising results for the earlier years in our study period (~2003-2006), we also find that as time progresses towards the present, the actual fire frequency and burned area data grows much greater than the predicted data. However, the same overall patterns hold true through the study period, so these maps are valid as qualitative indicators of fire risk and potential throughout rather than hard predictors of fire occurrence and severity. 
 
5. CONCLUSION
 
[14] Our findings suggest that GRACE can be considered a useful tool for assessing wildfire probability and predicting wildfire while presenting a clear relationship between terrestrial water storage and wildfires.  Furthermore, assimilated GRACE surface soil moisture content is suitable when considering wildfire potential across sizeable regions, as proven by our algorithm and its output for the 2003-2004 fire year case study.  Predictive capabilities pertaining to wildfire activity are increasing in both necessity and feasibility as we continue to refine and expand our algorithm to better service fire response managements. 

[15] Looking forward, there are several ways in which our algorithm can be refined. There are clear relationships between soil moisture and fire frequency/burned area, so incorporating more environmental variables that may account for the increase in fire frequency and severity through time would result in a more accurate modeling process. A transition from assessing fire risk on a seasonal level to a monthly time scale would also prove beneficial in identifying updated high-risk regions throughout the year. Lastly, Soil Moisture Active Passive (SMAP) data will offer more robust soil moisture data in the future and pick up where the GRACE mission leaves off as its satellites approach the end of their lives.
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8. FIGURES
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Figure 1: Study area, the contiguous United States.
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Figure 2: Pearson correlation coefficients for annual January-April average surface soil moisture and FPA FOD yearly burned area for the 2003-2013 study period.
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Figure 3: Relationship between class G fires per year and January-April average surface soil moisture within evergreen forest based on binned averages.
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Figure 4: Relationship between yearly area burned by class G fires and January-April average surface soil moisture within evergreen forest based on binned averages.



Figure 5: Probability of a class G fire occurring from May 2003-April 2004, scaled from 0-5%.


Figure 6: Predicted acres burned by class G fires from May 2003-April 2004
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Figure 7: Predicted and actual number of class G fires for the 2003-2004 fire year by land cover type.
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Figure 8: Predicted and acres burned by class G fires for the 2003-2004 fire year by land cover type.
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