

National Aeronautics and Space Administration

Utilizing Aerial Imagery and NASA Earth Observations to Assess Pinyon-Juniper Tree Mortality near Flagstaff, AZ

> Arina Morozova (Project Lead) Jessica Birk Jamal Jaffer Greg Peargin

Maryland – GSFC | Fall 2022

PROJECT PARTNERS

at an all of the second

National Park Service

Wupatki National Monument

NATIONAL PARK SERVICE

COMMUNITY CONCERNS

loss of habitat and food sources

ecological & hydrological **shifts**altering the local fire regime

tree **vulnerability** to insect attacks & risk of wildfires

threat to Southwestern culture -Hopi, Navajo, and Zuni Indigenous peoples

Pinyon-juniper trees experiencing partial dieback Image Credit: Mark Szydlo & Julie Long

STUDY AREA

- 1.9-million-acre study area near Flagstaff, AZ
- Federal land: Wupatki
 National Monument &
 Grand Canyon National Park
- Forest Service's Coconino
 National Forests
- Native American
 Reservations
- Study period: 2015 2021

Basemap Credit: NAIP Imagery, World Hillshade

Term I Overview (Arizona Water Resources) PJW mortality estimates from NAIP aerial imagery

• 43% mortality

in high probability areas*

47% mortality

- in Wupatki National Monument
- Trees mapped for 2015 & 2021
- *Areas excluding burn areas and mixed pinyon-juniper ponderosa forests

PROJECT OBJECTIVES

Measure the extent of Pinyon – Juniper Woodland mortality

Provide partners with a standard operating procedure

Assess study area environmental relationships to tree mortality

Image Credit: Mark Szydlo & Julie Long

EARTH OBSERVATIONS

ENVIRONMENTAL VARIABLES

METHODOLOGY: Tree Mortality

METHODOLOGY: Correlation

Join Mortality Aggregate Correlation Add Timeframes **Environmental Data** Data ESoil_tavg Qair f tavg Og tavg SoilMoist tavg TWS_tavg WaterTableD_ta Wind_f_tavg mortality percentar

10 Environmental Variables

% Mortality

Relationships between Mortality & Environmental Variables 2015–2021 2015–2017 2017–2019 2019–2021

RESULTS: Tree Mortality

Across the **whole** study area:

- ▶ 6.45% mortality between 2015 & 2017
- 9.88% mortality between 2015 & 2019
- 21.63% mortality between 2015 & 2021

PJW Mortality in Wupatki National Monument

19.8% avg mortality in 2021

RESULTS: Mortality Correlations for 2019-2021

Rainfall 0.14

20 km

RESULTS: Mortality Correlations for 2019 - 2021

→ High

LOW

 $Low \rightarrow High$

Wind Speed

Mortality

CONCLUSIONS: Main Takeaways

Large die back of PJW in Wupatki NM corresponds to NPS ground observations

NAIP imagery classification accurately identifies tree mortality

Weak correlations between environmental variables and mortality

Image Credit: Mark Szydlo & Julie Long

LIMITATIONS & FUTURE WORK

Classification Method

 Errors in detecting tree type & mortality

Mortality Drivers

 Limitations in assessing long droughts

Spatial Resolution

 Limitations from 1km x 1km pixel size

Computational Constraints

 Limitations of hardware & software configurations

ACKNOWLEDGEMENTS

- Partners: Mark Szydlo & Julie Long (National Park Service, Wupatki National Monument)
- Advisors:
 - Sean McCartney (NASA Goddard Space Flight Center, Science Systems and Applications, Inc.)
 - Joseph Spruce (Science Systems and Applications, Inc., Consultant)
- Project Fellow: Carli Merrick
- Past contributors:
 - Nicole Ramberg-Pihl (Project Fellow)
 - Margaret Jaenicke, Anne Britton, Abbi Brown, Liam Megraw

Maps throughout this work were created using ArcGIS® software by Esri. ArcGIS® is the intellectual property of Esri and is used herein under license. All rights reserved.

This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations.

National Aeronautics and Space Administration

EXTRA SLIDES FOR PARTNERS

Term I Overview (Arizona Water Resources) PJW mortality estimates from NAIP aerial imagery

- **43% mortality** in high probability areas*
- 47% mortality in Wupatki National Monument
- Trees mapped for 2015 & 2021

Environmental variables

Precipitation & soil moisture:

downward trend from 2015 to 2021

- Correlation between tree mortality in Wupatki National Monument and:
 - Elevation = -0.37
 - Soil moisture = 0.39^*
 - Land surface $T = 0.38^*$

Image Credit: AZWRI DEVELOP Team

CLASSIFICATION ACCURACY

Accuracy Assessment for live crown classification

Assessment	# of Random Points	Method	Accuracy	Карра	Error
2015 Vegetation Classification					
2017 Vegetation Classification					
2019 Vegetation Classification					
2021 Vegetation Classification					

RESULTS: Environmental Variable Correlations

RESULTS: Correlations with Term I Mortality

May 1,2, 2015 - May 1,2, 2021

- * Bare Soil Evaporation (0.25)
- * Wind Speed (0.24)
- * Specific Humidity (0.23)

Soil Moisture (0.18)

* Groundwater Storage (0.17)

May 2015 - May 2021

Evapotranspiration (0.21)

- * Bare Soil Evaporation (0.16)
- * Rainfall (0.15)
- * Groundwater Storage (0.12)
- * Specific Humidity (0.09)

RESULTS: Correlations with Term II Mortality

2015-2017

Groundwater Storage (0.15)

Specific Humidity (0.11)

Bare Soil Evaporation (0.11)

Rainfall (0.09)

Wind Speed (0.09)

2019-2021

Rainfall (0.20)

Air temperature (0.19)

Soil temperature (0.19)

Wind speed (0.18)

Bare Soil Evaporation (0.18)

2017-2019

Wind Speed (0.09)

Air Temperature (0.11)

Groundwater Storage (0.10)

Rainfall (0.08)

Snowfall (0.08)

2015-2021

Rainfall (0.19)

Bare Soil Evaporation (0.16)

Air Temperature (0.15)

Soil Temperature (0.14)

Groundwater Storage (0.13)

O Annual Macro Level

RESULTS: Mortality Correlations

Highest correlated variables:

Environmental Variable	Avg Correlation		
1. Bare Soil Evaporation	0.15		
2. Rainfall	0.14		
3. Groundwater Storage	0.13		
4. Wind Speed 	0.12		

Least correlated variables:

Soil Moisture, Evapotranspiration, Snowfall, Soil Temperature

CLIMATE TRENDS 1991 - 2021

CLIMATE TRENDS 1991 - 2021

