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1. Abstract  
The surface urban heat island (SUHI) effect is an environmental phenomenon resulting in cities with higher 
temperatures than rural areas due to increased pavement and decreased cooling from vegetation. The city of 
Santiago de Cali in Colombia faces SUHI challenges exacerbated by land use change. The Cali municipal 
government agency, Departamento Administrativo de Gestión del Medio Ambiente, and the community 
organization Fundacion Dinamizadores Ambientales partnered with NASA DEVELOP to evaluate 
communities in Cali most vulnerable to urban heat. This project illustrated the utility of using NASA Earth 
observations to evaluate the relationship between land use, temperature, and social factors in Cali, Colombia 
between 2013 and 2023. The team used Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), and Landsat 9 OLI-2/TIRS-2 to 
generate land surface temperature (LST) maps in Google Earth Engine through NASA DEVELOP’s Urban 
Heat Exposure Assessment Tempe 2.0 tool. Cloud cover limited the project feasibility, but it improved with 
Landsat 9 data. In ArcGIS Pro, the team found that LST was significantly higher in urban areas than in 
wetlands or forests. Using R Studio, the team ran a principal component analysis and found that health care 
and green space access were negatively correlated, and Afro-Colombian ethnicity was positively correlated 
with LST. With knowledge of the most impacted and vulnerable regions, the partner organizations can 
prioritize establishing healthcare facilities and green spaces in those areas to reduce the impacts of urban heat. 
 
Key Terms 
Colombia, land surface temperature (LST), land use/land cover change (LULC), remote sensing, 
socioeconomic vulnerability, surface urban heat islands (SUHIs), urban development, vegetation loss 
 

2. Introduction 
The surface urban heat island (SUHI) effect is an environmental phenomenon where urban areas experience 
higher temperatures than their rural surroundings due to high levels of urbanization (Li et al., 2021). Paved 
surfaces and buildings absorb high levels of energy from the sun and then radiate that energy as heat to the 
atmosphere, making urban areas hotter than their rural counterparts. The SUHI effect is a prominent issue in 
Santiago de Cali, Colombia, colloquially known as Cali, due to decades of deforestation, wetland degradation, 
and development. This investigation aims to examine the impacts of land use change on the SUHI effect and 
social vulnerability. Identifying spatial relationships between SUHIs and land cover change is important 
information for the local population to understand the extent of heat disparity and its impacts on different 
communities in Cali. 
 
Colombia’s rapid urbanization over the past three decades caused significant changes in land use, including 
the purposeful draining of wetlands for agriculture, which led to the shrinking of wetland area by 99% in Cali 
(Ocampo-Marulanda et al., 2021). Understanding the environmental ramifications of this expansion is crucial 

for future sustainable urban planning. A recent study (Salazar Tamayo and Julio Estrada, 2022) highlighted 
the lack of effective and sustainable management of urban growth in Cali by analyzing urban expansion 
patterns using Landsat 5 and census data. This study revealed that local authorities often underestimate rates 
of population growth and land requirements. However, urban development that emphasizes the preservation 
of blue and green spaces (e.g. wetlands and forests) can mitigate SUHI impacts (Li et al., 2021). One study 
examined the impact of land use and land cover changes on SUHI patterns, highlighting how wetland 
fragmentation leads to increased land surface temperatures (LST; Cai et al., 2016). In Colombia, the loss and 
fragmentation of natural lands coupled with the increase in impervious surfaces created unknown impacts 
from SUHI that warrant further exploration. 
 
Research assessing SUHIs often incorporates remote sensing as a critical tool to determine how heat is 
distributed. The application of Landsat 8 imagery can facilitate the identification of extreme heat areas and the 
development of a vulnerability index, guiding urban planning for climate resilience (Dialesandro et al., 2021). 
Moreover, scientists have demonstrated the efficacy of Google Earth Engine (GEE) for processing extensive 
Landsat data to monitor long-term SUHI trends and advocated for the platform’s use in global SUHI studies 
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(Ravanelli et al., 2018). Other studies used remote sensing techniques to investigate SUHI effects in Cali, with 
findings indicating significant temperature increases in highly urbanized areas, particularly in the southwestern 
and eastern parts of the city (Preciado Vargas & Aldana Olave, 2011). This DEVELOP project is built on 
prior research, using remote sensing tools to map SUHI intensity and analyze its spatial correlation with land 
use and land cover changes and socioeconomic vulnerability. 
 
The first term of this project, conducted in spring 2024, investigated wetland declination due to urban and 
agricultural development in Cali from 2002 to 2023. Cali is located within the Valle del Cauca department in 
Colombia and is divided into an urban zone of twenty-two comunas, which are administrative districts further 
divided into neighborhoods, and a rural zone of fifteen corregimientos (Figure 1; Equipo del Sistema de 
Indicadores Sociales, Alcaldía de Santiago de Cali. (n.d.)).  
 

 
Figure 1. Study Area of Cali, Colombia (left), Cali within Colombia (top right), and Colombia within South 

America (bottom right). 
 
Two of Cali’s environmentally focused organizations, the Departmento Administrativo de Gestión del Medio 
Ambiente (DAGMA) and Fundación Dinamizadores Ambientales, partnered with the spring 2024 team to 
achieve their shared interest in developing community conservation initiatives and educational materials to 
increase citizen participation in wetland management. DAGMA is a part of Cali’s municipal government 
focused on environmental stewardship, while the Fundación Dinamizadores Ambientales is a Cali-based 
environmental justice non-profit. The spring team mapped land use and land cover change, delineated 
wetland extent as of 2023, and assessed the potential for wetland presence. The team found high wetland 
potential in the southeastern part of Cali now dedicated to agriculture, indicating that these low-elevation 
areas were previously wetlands. The results also suggested an extensive network of riparian wetlands in Cali. 
Notably, the team found that the El Pondaje and Charco Azul urban wetlands declined in size from 2002 to 
2023, and that urbanized areas increased by around 2000 hectares. 
 
The summer 2024 Cali Urban Development II team continued the partnership with DAGMA and the 
Fundación Dinamizadores Ambientales to identify areas most impacted by the SUHI effect from January 
2013 through December 2023 and identify comunas where cooling interventions could be implemented. The 
team assessed the feasibility of using NASA Earth observations and remote sensing methods to investigate 
urban heat in Cali, while providing the partner organizations with end products that can assist their decision-
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making and aid in their objective to increase community understanding of urban heat. The team aimed to 
identify the areas of the city that experienced the highest temperatures, evaluate how land use has changed, 
and locate areas experiencing high temperatures and social vulnerability. 

3. Methodology 
3.1 Data Acquisition  
3.1.1 Urban Heat 
A spring 2022 DEVELOP team created the Urban Heat Exposure Assessment Tempe (UHEAT) 2.0 tool, 
which uses census data, Earth observations, and other open-source data to generate maps of environmental 
variables such as land surface temperature (LST; Agrawal et al.). The team utilized the geoprocessing portion 
of code from the UHEAT tool, which relied on imagery from Landsat 8 and Aqua Moderate Resolution 
Imaging Spectroradiometer (MODIS) for calculated environmental variables. The team reworked the 
UHEAT 2.0 code by incorporating data from Landsat 7 through 9 to generate the maximum number of 
images per selected year (U.S. Geological Survey Earth Resources Observation and Science Center, 2022). 
Team members added the study area shapefile as an asset to GEE to clip each variable to this area. The team 
generated LST maps for five years: 2013, 2015, 2018, 2020, and 2023, and a composite of the entire study 
period. The team selected the years 2013, 2018, and 2023 to visualize changes over the beginning, middle, and 
end of the study period. Additionally, the year 2015 served as a case study due to intense weather events 
caused by El Niño. The team also included the year 2020 to draw meaningful connections with the 
socioeconomic data, much of which was from 2020. For all years, the team generated composite images using 
the entire year to produce the most accurate and cloud-free aggregate images possible with the available data 
(Table A1). 
 
3.1.2 Landcover 
For the land use/land cover map (LULC), the team used Collection 2 Level 2 data from Landsat 8 
Operational Land Imager (OLI; U.S. Geological Survey Earth Resources Observation and Science Center, 
2023–2024). Using the USGS Earth Explorer website, the team filtered the data to only include images from 
January 1, 2013 – December 31, 2023, with a cloud cover less than or equal to 47% (Table B1). It is 
important to note that the team increased this threshold to 56% for the 2021 image due to the unfavorable 
distribution of cloud cover over the study area at lower cloud cover filters. Then, team members loaded 
Surface Reflectance metadata and Quality Assessment (QA) bands of the filtered images into ArcGIS Pro 3.2. 
 
3.1.3 Social Vulnerability 
To analyze social vulnerability to urban heat, the team first gathered data from the partners and the “Cali en 
Cifras” report, which makes statistical data for Cali available at citywide and comuna-specific levels (Morales 
& Perilla Galvis, 2021). The metrics chosen to indicate vulnerability included census data about health, age, 
ethnicity, socioeconomic status, and access to both public and ecosystem services (Table C1; Alcaldía de 
Santiago de Cali., 2022). The team acquired all indicators on a comuna level to enable direct comparison and 
demonstrate how factors determining social vulnerability are distributed spatially in Cali. The team then 
organized the selected indicators into an Excel table for processing. 
 
3.2 Data Processing 
3.2.1 Urban Heat 
The UHEAT 2.0 tool code was originally in Python syntax, so team members modified it to function within 
GEE’s JavaScript API. The team utilized the tool to create maps of daytime LST, which relied on Landsat 
data, for the years and time periods selected, using QA bits to mask out clouds. For the Landsat-derived 
variables, the team merged collections from Landsat 7, 8 and 9, using all the satellites available for each year. 
For example, in 2013, only two Landsat satellites were operational, so the team utilized data from these two 
satellites. In contrast, the team used data from the three satellites which were operational in 2023. The team 
clipped each environmental variable to the study area asset and converted all temperatures from Fahrenheit to 
Celsius.  
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3.2.2 Landcover 
The team ran a raster containing the surface reflectance bands from each year individually through Esri’s 
Landsat 8 Deep Learning Landcover Classification model using the Classify Pixels using Deep Learning 
geoprocessing tool (Esri, 2023). The deep learning model classified land use into 16 different categories 
(broken down into three water/wetland types, four urbanization levels, three forest types, two agriculture 
types, and four miscellaneous categories). The Extract by Mask tool limited the output to the urban region 
comprising the study area. Due to Cali’s proximity to the equator, persistent cloud cover introduced 
uncertainty into the landcover classification. Therefore, team members created a cloud mask from raster 

functions by using the QA band to transpose bits and applying the Boolean Not function to clip from the 
LULC raster pixels having high confidence cloud, cloud shadow, or cirrus (Xu, 2023; Figure B1; Table B2).  
 
3.2.3 Social Vulnerability 
After acquiring demographic data, the team prepared the data for analyses in RStudio (Table C1). First, the 
team converted data categories listing numbers of people or households to percentages of the population. 
These categories included the Afro-Colombian and Indigenous populations, the populations under the age of 
5 and over the age of 65, and the number of households in the two most economically disadvantaged social 
strata. Team members ensured that the population data used to calculate percentages for each indicator 
matched the year the data were collected. Second, to determine the proportions of the population that lacked 
access to public utilities, the team subtracted the percentages describing access to public utilities from 100. 
The team applied the same method to determine the percentage of the population that lacked a secondary 
education. Then, the team calculated sums from figures that were initially separated in Cali demographic data, 
such as the total number of health facilities, and the percentage of the population living with disabilities. 
Finally, the team calculated the area of green space per comuna in QGIS using the Intersect geoprocessing 
tool on a partner-provided green spaces shapefile and comuna boundary shapefiles. For each comuna, team 
members divided the green space by the population to produce the area of green space per capita. 
 
3.3 Data Analysis 
3.3.1 Urban Heat 
The team exported TIF files of LST for each selected year to ArcGIS Pro to generate a breakdown of the 
mean LSTs per comuna using the zonal statistics tool. Furthermore, the team calculated the change in LST 
between the years 2013 to 2023. Team members then checked the validity of the Landsat-derived LST results. 
First, the team generated LST results for 2013 and 2023 using Aqua MODIS satellite data to visually verify if 
the same temperature trends were demonstrated across the period (Wan, Hook, & Hulley, 2013). The team 
then quantified temperature uncertainty in Cali using Landsat’s quality assessment band to run an uncertainty 
mask. The team then used the verified results to run analyses on LST's relationship with LULC and social 
vulnerability. 
 
3.3.2 Landcover 
To determine the extent of urban expansion during five- and ten-year intervals, the team used the Change 
Detection Wizard in ArcGIS Pro with a categorical change method to detect differences in the landcover. 

The team compared 2013 to 2018, 2018 to 2023, 2013 to 2022, and 2013 to 2023 to assess what period 
experienced the greatest change, along with the overall urban increase. The outputs were symbolized by 
Class_To. The team used the 2013 to 2022 change results to compare with the 2013 to 2023 changes to 
ensure that the 2023 landcover did not contain major errors or outliers. The team used the Change Detection 
Wizard to quantify the difference between the two change rasters and found it to be minimal, so the 2013-
2022 change raster is not included in the results.      
 
To facilitate further comparison, the team used the Zonal Histogram tool within ArcGIS Pro to create a table 
containing the total count of pixels classified under each of the LULC classes per comuna. The team then 
calculated the number of pixels classified as low to high-intensity development as a percentage of the total 
number of pixels in each comuna to measure the degree of urbanization. For further comparison, the team 
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calculated the difference in development between the start and end years as a percentage. The team members 
also ran the Zonal Statistics to Table tool to calculate the average temperature each year for each type of 
landcover classification. 
 
3.3.3 Social Vulnerability 
The team utilized R Studio to conduct a Principal Component Analysis (PCA) to understand the relationships 
between the socioeconomic indicators chosen. Team members selected PCA as a relevant method to analyze 
socioeconomic data because of its effectiveness in reducing data with many dimensions. With 15 variables 
measuring Cali residents’ various demographic characteristics and ability to access resources, the team wanted 
to determine which factors would most influence residents’ vulnerability to environmental burdens: in this 
case the high temperatures symptomatic of the urban heat island effect. Additionally, the script within the 
UHEAT 2.0 code for generating PCA-based heat vulnerability, heat exposure, and heat priority scores was 
not adaptable for this international project because it was designed to draw from U.S. Census data. To 
facilitate a PCA in R Studio, team members first installed the packages “corrr,” “corrplot,” “ggcorrplot,” 
“FactoMineR,” and “factoextra” for correlation analysis, correlation matrix creation, multivariate data 
analysis, and PCA output visualization. Second, the team normalized the data and ran the PCA, once with 
solely the 15 socioeconomic variables, and a second time with the added variable of 2023 LST. Third, team 
members visualized the results for each PCA as biplots and correlation matrices to explore how the variables 
related to one another. The team then returned to the Excel spreadsheet and aggregated each row of 
socioeconomic variables to calculate each comuna’s social vulnerability. 
 

4. Results & Discussion 
4.1 Analysis of Results 
4.1.1 Urban Heat 
The team found that, when analyzing LST across the entire study period, urban heat in Cali tended to be 
concentrated around central comunas with the periphery experiencing lower surface temperatures, especially 
in the south and west (Figure 2). 
 

 
Figure 2. Median LST (ºC) (left) and mean LST (right) in Cali from 2013 through 2023. Grey boundaries 

separate individual comunas. 
 

Over time, the team found that LST increased from 2013 to 2015, mostly plateaued in 2018, and decreased in 
2020 and 2023, with an overall decrease across the decade (Figure 3; Table 1). 
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Table 1 
Yearly LST Ranges 

Year Minimum (°C) Median (°C) Maximum (°C) 

2013 21.20 39.63 51.01 

2015 21.47 40.77 51.94 

2018 24.26 40.63 52.90 

2020 21.40 36.06 48.96 

2023 19.10 35.66 45.50 

 

 

 
Figure 3. Yearly LST Ranges. 

 
Despite the decrease in temperatures during the study period, the intensity of the SUHI effect that the 
comunas experienced increased. In a 2015 study conducted by the municipal government of Cali, including 
one of this project’s partners, DAGMA, researchers classified SUHIs based on the deviation from the median 
surface temperature calculated across the study area, guided by the thresholds listed below (Table 2; 
Corporación Autónoma Regional del Valle del Cauca [CVC] et al., 2015). To visualize Cali’s present heat 
islands, the team reclassified the image composite from the entire study period according to these thresholds 
(Figure 4). 
 
Table 2 
SUHI Classification Thresholds 

SUHI Classification Temperature (°C) 

Weak < 2 

Moderate 2 - 4 

Strong 4 - 6 

Very Strong > 6 
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Figure 4. SUHIs in Cali from median temperatures across 2013 through 2023. 

 
In that study, only one comuna (comuna 4, in the north central region of Cali) had a strong SUHI effect 
intensity while most others were considered moderate (CVC et al., 2015). However, when evaluating SUHIs 

at the comuna level across the entire study period, the team found that there were ten comunas with a strong 
intensity and eight with a very strong intensity (Table D1). As such, there are currently more residents within 
Cali that are affected by the SUHI effect than estimated by the 2015 study.  
 
4.1.2 Landcover 
Cali’s municipality was divided into four general categories of land use: city, forests, wetlands, and agriculture 
which can all be further distinguished into more specialized groups using the deep learning classification 
model (Figure 5). Other land classification tools, such as the supervised classifier used in term I of this 
project, previously struggled to differentiate wetlands from forests; however, the deep learning model was 
successful in identifying 81% of known wetlands in 2023 (Monteiro et al., 2024). For the 19% that were 
unidentified, many were mistakenly classified as open water. To check the validity of the land classification 

tool, the team generated a confusion matrix using Sentinel-2 10-m landcover data as a reference (Table E1). 
The team found a kappa coefficient of 0.80 which suggests the model is moderately accurate (Mao & Wang, 
2012; Table E2). 

 
Figure 5. Landcover classification in 2013 and 2023. The white sections are due to the cloud mask. 

 
Many landcover alterations occurred between 2013 and 2023 (Figure 6). The urban areas in Cali expanded, 
particularly in the southeast, and in many areas, the intensity of development increased to encompass an area 
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of 52.8 km2. It is important to note that while development intensity increased within the city, deforestation 
and the rural to urban land conversion were mainly at the south end of the city. During the study period, Cali 
experienced a 15.6% population increase which likely led to increased development and suburban sprawl 
(United Nations, 2024). The change from medium to high developed intensity was the largest. Additionally, 
39% of the pastures in 2013 became crops in 2023, likely due to an increased need to feed people as the 

population within the city grew. Similarly, 8.4 km2 of deciduous forests were converted, with 34% of the 
forest lost becoming pastures and 31% becoming developed open space which is likely to be developed more 
in the future.  

 
Figure 6. Human alterations to landcover from 2013 to 2023. The stacked column colors correspond to the 

land type classification in 2023. Area is measured in m2. 
 

Land use patterns also influence the temperature of each area. The team consolidated land classes into 
simplified groups and found that while the actual temperature values varied between years, the annual 
temperature differences between land types remained the same (Figure 7; Table E1). Team members 
conducted a Student’s t-test and found that the difference in temperature between urban land and forested 
land was significant (p = 0.0013), with urban land yielding the highest temperatures in most years. Conversely, 
the forested lands consistently had the lowest temperatures at approximately 31 °C on average. The wetlands 
also had cooler temperatures with an average of 33 °C. One explanation for the wetlands being warmer than 
forested areas is their size. Many of the wetlands in Cali are small and easily heated, whereas the larger patches 
maintain cooler temperatures better (Cai et al., 2016). It is interesting to note that the hottest land cover types, 
developed urban areas and croplands, are the result of human modifications to the land. The Valle de Cauca 
region produces several crops, such as sugarcane, that may contribute to these high temperatures (U.S. 
Department of Commerce, 2021).  
 

 
Figure 7. Mean LST of simplified land cover classes.  
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After running a zonal analysis, the team found that comunas in the center of the city had the highest intensity 
of urban development, with many having more than 97% of their area classified as developed low to high 
intensity. Comunas on the periphery, and especially those to the south, tended to have more sparse 
development (Figure 8). However, while the outskirts of the city were less developed, they experienced the 
largest changes in development over the study period (Figure 8). 

 
Figure 8. Urbanization at the comuna level across the study period, illustrated by mean development 

percentage (left) and change in development (right). 

  
To better understand the relationship between land use changes and urban heat, the team plotted the 
percentage of urban development per comuna against the comuna’s mean land surface temperature and 
found that the two variables had a moderately strong positive correlation, with an R-squared value of 0.7 
(Figure 9). Moreover, the team also visualized this relationship with the bivariate choropleth map shown 
below that once again showed the core-periphery divergence (Figure 9). This means that, generally, comunas 
that are more developed tend to have higher mean land surface temperatures. No significant correlation was 
found between changes to development and changes to land surface temperatures across the study period. 

 

Figure 9. Visualizations of the relationship between development and land surface temperatures. 
 

4.1.3 Social Vulnerability 
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By examining the correlation matrices produced with the PCA results, the team found that the socioeconomic 
variables most indicative of social vulnerability were the adult illiteracy rate, percentage of households in the 
most socioeconomically disadvantaged social stratum, percentage of households enrolled in the SISBEN 

program (Sistema de Identificación de Potenciales Beneficiarios de Programas Sociales) receiving social and 

health benefits designed to serve low-income residents, and access to green space (Figure C1). Team 
members found that the areas with the hottest temperatures correlated to higher Afro-Colombian 
populations (correlation coefficient = 0.57) and less access to green space (correlation coefficient = -0.39; 
Figure C2). On a comuna level, comunas 1, 14, 15, 20, and 21, all on the outskirts of Cali, had the highest 
aggregate social vulnerability scores. Comparing social vulnerability scores with land surface temperature to 
determine heat risk demonstrated that comunas 13, 14, 15, and 21, on the eastern side of the city, are most at-
risk, experiencing both high temperatures and high social vulnerability (Figure 10). The team also created a 
map displaying urban green spaces and wetlands overlaid over an average land surface temperature raster 
along with a line graph comparing green space area with LST per comuna, revealing that although there is 
much temperature variation surrounding urban green spaces throughout the study area, a comuna-based 
analysis shows an inverse relationship between green space and LST, with higher temperatures in comunas 
with less green space and lower temperatures experienced in comunas with more green space (Figure C3). 
 

 
Figure 10. Social vulnerability by comuna (left) and heat risk assessment calculated by comparing aggregate 

social vulnerability scores with land surface temperature (right). 
 
4.2 Errors & Uncertainties  
The most prominent limitation throughout the project was cloud cover, which posed a challenge to landcover 
classification and LST outputs. Cloud cover is a persistent obstacle to using Earth observations in Cali 
because of the region’s proximity to the equator and tropical climate. In fact, all key years in the study period 
had a mean cloud cover percentage above 60% (Table 3). Originally, the team planned to use only Landsat 8 
to generate LST data, however, the clouds limited the number of satellite images available to use in our 
analysis to less than 20 per year. The team adapted by incorporating all the current operational Landsat 
satellites in their analysis. Still, the number of images generated for years relying on 2-3 Landsat satellites was 
between 34-63 images. The team employed a cloud mask which was able to remove the clouds but left large 
areas of no data in some datasets, which heavily affected the landcover maps. 
 
Table 3 
Cloud cover percents across the study period 

Year Minimum (%) Mean (%) Maximum (%) 

2013 30 73 96 
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2015 16 68 92 

2018 30 69 95 

2020 22 71 94 

2023 16 64 95 

 
The deep learning model for landcover classification was generally accurate at differentiating land types. 
However, the model frequently misidentified urban land as barren and, occasionally, wetlands as open water. 
The model was trained using the National Land Cover Database, which is run by the USGS and based on 
landcover imagery in the United States. The ecosystems and construction materials in Colombia are likely 
different and could impact the model’s accuracy (Caro, 2012). 
 
Finally, some of the data used for the social vulnerability analysis was only available for 2013, the very first 
year of the study period, potentially making some of the figures calculated for socioeconomic variables 
outdated while other data were more recent (Table C1). Due to this limitation, the social vulnerability PCA 
and maps may not paint the most accurate picture of social vulnerability and heat risk in Cali at present day. 
 
4.3 Feasibility & Partner Implementation  
The feasibility of this study relies heavily on the team’s ability to meet the image requirements of 35 images or 
more used for accurate calculations, such as for land surface temperature. Acquiring enough Landsat-derived 
images to accurately depict changes in land surface temperature over time will prove difficult for years prior 
to the launch of Landsat 9 in 2021. Moreover, even in years with three satellites, the team found that, on a 
pixel-by-pixel basis, most pixels had less than 30 data inputs for calculation after applying the cloud mask 
(Table A2). To mitigate these limitations, the partners can utilize enhanced cloud masking techniques to 
improve cloud detection and retain more usable data. Another major limiting factor is the uncertainty in the 
surface temperature bands from Landsat ETM+/TIRS/TIRS-2. Previous research made use of a quality 
assessment mask that excluded pixels where the uncertainty was above 4 °C (Nuñez et al., 2023). However, 
close to 60% of the study area was above this threshold with an uncertainty ranging from 3.5 - 5.5 °C (Figure 
11). 
 

  
Figure 11. Land surface temperature uncertainty in Cali from median temperatures across 2013 through 2023. 

 
In fact, the earlier years in the study period tended to have higher uncertainties than later years which could 
have impacted the results (Table 4). 
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Table 4 

Land surface temperature quality assessment (ST_QA) values per year 

Year Minimum (oC     ) Mean (oC     ) Maximum (oC     ) 

2013 3.37 4.17 6.30 

2015 3.16 4.02 6.02 

2018 3.60 4.23 5.81 

2020 3.28 3.97 5.46 

2023 3.01 3.54 4.84 

 

5. Conclusions 
The team found that temperature varies significantly between urban and forested lands, which shows that 
landcover strongly impacts surface temperatures. This finding indicates that the proportion of developed land 
area per comuna significantly increases the temperatures residents experience. The high temperatures in crop 
lands signify that the types of vegetation grown are important, with trees as the most effective at reducing 
heat. The temperatures were hottest in the center of the city, where there is less green space and less 

vegetation cooling. The team also found less green space in areas of higher social vulnerability, on the 

outskirts of the city where the greatest rates of development during the study period occurred. Specifically, 
the team identified Comunas 13, 14, 15 and 21 as the most heat-vulnerable and likely to receive prioritized 
implementation of green spaces and health facilities. These takeaways support the partner organizations by 
identifying communities at the greatest risk to heat, along with factors that will influence future risk. The 
relationship between urban heat, landcover use, and the comunas’ social demographics will be useful for 
future city planning.  
 
Overall, this project demonstrated that using remote sensing methods to understand the impacts of land use 

change, urban heat islands (or SUHI?),     and social vulnerability in Cali is feasible for future planning and 

implementation, including future urban heat studies. Despite the difficulty in obtaining suitable images due to 
persistent cloud cover, improvements were made upon past studies of urban heat in Cali, the most notable of 

which depended on a single satellite image from 2015 to identify urban heat islands (CVC et al., 2015; Table 
1), while this project utilized an average of 43.2 images per year for five select years throughout the study 
period. Furthermore, the Esri deep learning model for landcover proved effective for the study area, enabling 
a detailed examination of development intensity and land cover change which could be combined with 
temperature data for a comprehensive analysis. Compared to term I of this project, which used a supervised 
classifier dependent on team members selecting training points for each land cover type and yielded a kappa 
coefficient of 0.20, indicating low accuracy, the deep learning model yielded a kappa coefficient of 0.80. 
Employing a deep learning model could save partner organizations valuable time in comparison to the current 
frequently-used strategy of digitizing aerial and satellite images to create land use and land cover maps. 
Finally, the availability of comuna-specific socioeconomic datasets on Cali municipal websites allowed for a 
comuna-level understanding of how social factors increase heat risk for communities in different areas of the 
city. As demographic data from Cali’s 2018 census and upcoming 2024 census are released and the 
municipality updates its online resources accordingly, partners could conduct another social vulnerability 
analyses that incorporates more recent data. 
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7. Glossary 
Blue Space – visible water features including wetlands, pools, and rivers 

Composite Images – an image made from combining several other images 

Comunas – city divisions in Cali, similar to districts in the U.S. 

Correlation Matrix – a statistical method to evaluate the relationship between variables  

Earth Observations – satellites and sensors that collect information about the Earth’s physical, chemical, 
and biological systems over space and time 

Enhanced Thematic Mapper Plus (ETM+) – the sensor on Landsat 7 

Google Earth Engine (GEE) – a cloud-based platform used to access and analyze satellite imagery  

Green Space – areas of grass, trees, or vegetation used for recreational purposes in urban environments 

Heat Disparity – unequal distribution of heat in urban areas and neighborhoods which causes 
disproportionate impacts to residents 

Kappa Coefficient – a statistic that represents the amount of association between continuous variables 

Land Surface Temperature (LST) – describes how hot a material of the earth’s surface would feel to touch 
at a given location 

Land use/Landcover (LULC) – describes the type of land and its purpose 

Moderate Resolution Imaging Spectroradiometer (MODIS) – the sensor on the satellite Aqua 

Operational Land Imager (OLI) – a sensor on satellites Landsat 8 and 9 

Principal Component Analysis (PCA) – a statistical analysis method used to reduce the dimensionality of 
data with many variables in order to understand which few components explain the variation among most of 
the data 
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Quality Assessment Band (QA) – satellite data that allows users to filter the pixels to remove clouds 

Thermal Infrared Sensor (TIRS) – a sensor on satellites Landsat 8 and 9 

Urban Heat Island Effect (UHI) – an environmental phenomenon where urban areas experience higher 
temperatures than their rural surroundings due to high levels of urbanization 
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9. Appendices 
Appendix A: LST calculation limitations 

Table A1 
Image availability per year 

Year Images from 
Landsat 7 

Images from 
Landsat 8 

Images from 
Landsat 9 

Total Images 

2013 19 15 N/A 34 

2015 18 22 N/A 40 

2018 20 20 N/A 40 

2020 20 19 N/A 39 

2023 23 19 21 63 

Composite 199 210 39 448 

*N/A entries are a result of Landsat 9 not having been launched 
 
Table A2 

Ranges of image data inputs left, for LST analysis, after applying cloud mask 

Year Smallest number of data inputs Mean number of data inputs Largest number of data inputs 

2013 6 11 17 

2015 7 20 22 

2018 6 14 21 

2020 4 19 25 

2023 16 24 30 

All 87 200 215 
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Appendix B: LULC Image Cloud Cover 
 
Table B1 
Image inputs for the LULC deep learning model 

Year Product ID Date Acquired Cloud Cover % 

2013 LC08_L2SP_009058_20130902_20200913_02_T1 9/2/2013 44.18 

2015 LC08_L2SP_009058_20151229_20200908_02_T1 12/29/2015 41.44 

2018 LC08_L2SP_009058_20180511_20200901_02_T1 5/11/2018 37 

2020 LC08_L2SP_009058_20200109_20200823_02_T1 1/9/2020 42.9 

2023 LC08_L2SP_009058_20230829_20230906_02_T1 8/29/2022 31.17 

 
Table B2 
Transpose bits raster function input (U.S. Geological Survey, 2024) 

Output 
Bit* 

Input 
Bit 

Bit Value – 0** Bit Value - 1 

0 0 Image data Fill data 

1 1 No cloud dilation Cloud dilation 

2 2 None to low confidence cirrus High confidence cirrus 

3 3 None to low confidence cloud High confidence cloud 

4 4 None to low confidence cloud shadow High confidence cloud shadow 

*Bits numbered 5-15 set to constant fill value of 0  

**Hence, a cloud free pixel will have all 16-     bit values equal 0 
 

 
Figure B1. Cloud mask workflow within ArcGIS Pro’s raster function editor (Xu, 2023). 
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Appendix C: Social Vulnerability Data & Results 
Table C1 
Social vulnerability indicators and Cali demographic data sources 

Indicator Year Source Methodology (if 
applicable) 

Percentage of 
households in social 
stratum 1* 

2020 Cali en Cifras 2021 p.180 -- 

Percentage of 
households in social 
stratum 2* 

2020 Cali en Cifras 2021 p.180 -- 

Percentage of the 
population lacking a 
basic secondary 
education 

2013 Consulta de perfiles por 
comunas webpage - PDFs 
downloaded for each 
comuna 

100 - comuna “Tasa de 
escolaridad neta básica 
secundaria” (TENS 
figure).      e.g. for 
Comuna 1, 100 - 64.0 = 
36% of the population 
does not have a basic 
secondary education      

Adult illiteracy rate 2013 Consulta de perfiles por 
comunas webpage - PDFs 
downloaded for each 
comuna 

-- 

Percentage of the 
population with 
disabilities 

2013 Consulta de perfiles por 
comunas webpage - PDFs 
downloaded for each 
comuna 

% "blindness" + % 
"deafness" + % 
"muteness" figures from 
comuna profiles 

Percentage of 
households on low-
income healthcare 
benefits 

2013 Consulta de perfiles por 
comunas webpage - PDFs 
downloaded for each 
comuna 

-- 

Total number of health 
facilities 

2021 Cali en Cifras 2021 p.171-
173 

#"Puestos de salud" + 
#"Puestos de salud y 
CAB" + #"Centro 
hospital" + 
#"Hospitales y clinicas" 

Households without 
electricity, water, and 
sewage coverage 

2013 Consulta de perfiles por 
comunas webpage - PDFs 
downloaded for each 
comuna 

100 - 
energy/water/sewage 
coverage percentage 
= % not covered 

Households without 
natural gas coverage 

2013 Consulta de perfiles por 
comunas webpage - PDFs 
downloaded for each 
comuna 

100 - natural gas 
percentage = % not 
covered 

Households without 
garbage collection 
coverage 

2013 Consulta de perfiles por 
comunas webpage - PDFs 
downloaded for each 
comuna 

100 - garbage collection 
percentage = % not 
covered 

Percentage of the 
population that is Afro-
Colombian 

2018 "Barrio Etnico 2018" 
tab of Informacion Censo 

-- 
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2018 Barrio-comuna data 
set 

Percentage of the 
population that is 
Indigenous 

2018 "Barrio Etnico 2018" 
tab of Informacion Censo 
2018 Barrio-comuna data 
set 

-- 

Percentage of the 
population under the 
age of 5 

2018 "Barrio Quinquenales 
2018" tab of Informacion 
Censo 2018 Barrio-comuna 
data set 

-- 

Percentage of the 
population age 65 and 
over 

2018 "Barrio Quinquenales 
2018" tab of Informacion 
Censo 2018 Barrio-comuna 
data set 

-- 

Access to green space 
(square meters per 
capita) 

2022 "Zonas Verdes" partner-
provided shapefile and 
"Cali en Cifras" 2022 
population data 

Area of green space 
within each comuna 
divided by population of 
the comuna 

*The two social strata refer to how households are classified by the Colombian government in order of access 
to resources and as a tool to determine which households would benefit most from public services. They are 
a general approximation of the hierarchy of poverty and wealth present among Colombian residents. For the 
purposes of this study’s social vulnerability analysis, we chose to use data from the two most disadvantaged 
strata, categorized in Colombia as “low-low” (stratum 1) and “low” (stratum 2) status. 
 

Figure C1. Correlation matrix showing the strength of correlation between the 15 selected socioeconomic 
variables.  
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Figure C2. Correlation matrix with correlation coefficients showing the strength of correlation between the 15 
selected socioeconomic variables and land surface temperature. 
 

 
Figure C3. Map of land surface temperature averages throughout the entire study period, overlaid with 

partner-provided shapefiles of urban green spaces and wetlands (left), and line graph depicting the relationship 
between average LST over the entire study period and green space area per comuna (right). 
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Appendix D: SUHI by Comuna 
Table D1 
SUHI Classification by Comuna across the Study Period 

Name Maximum LST (°C) Difference (39.04°C) SUHI Classification 

Comuna 1 40.58 1.54 Weak 

Comuna 2 45.23 6.19 Very Strong 

Comuna 3 47.15 8.11 Very Strong 

Comuna 4 48.10 9.06 Very Strong 

Comuna 5 46.04 7 Very Strong 

Comuna 6 45.03 5.99 Strong 

Comuna 7 45.20 6.16 Very Strong 

Comuna 8 46.67 7.63 Very Strong 

Comuna 9 44.79 5.75 Strong 

Comuna 10 43.48 4.44 Strong 

Comuna 11 43.13 4.09 Strong 

Comuna 12 42.74 3.7 Moderate 

Comuna 13  45.53 6.49 Very Strong 

Comuna 14 43.74 4.7 Strong 

Comuna 15 44.24 5.2 Strong 

Comuna 16 43.14 4.1 Strong 

Comuna 17 46.76 7.72 Very Strong 

Comuna 18 43.11 4.07 Strong 

Comuna 19 44.64 5.6 Strong 

Comuna 20 42.29 3.25 Moderate 

Comuna 21 43.27 4.23 Strong 

Comuna 22 41.26 2.22 Moderate 
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Appendix E: Confusion Matrix 
Table E1 
Reclassification of Landsat and Sentinel LULC data 

Landsat 8 Classes Sentinel-2 Classes Reclassified Value 

Deciduous Forest Trees 1 - Forest 

Evergreen Forest   

Mixed Forest   

Open Water Water 2 - Wetlands 

Woody Wetlands Flooded Vegetation  

Emergent Herbaceous Wetlands   

Cultivated Crops Crops 3 - Crops 

Developed, Open Space Built 4 - Urban 

Developed, Low Intensity   

Developed, Medium Intensity   

Developed, High Intensity   

Barren Land*   

Hay/Pasture Rangeland 5 - Pastures 

Shrub/Scrub   

Herbaceous   

*Barren land included under “Urban” due to the model’s misclassification of developed land 
 
Table E2 

Confusion Matrix for LULC Deep Learning Classification Tool 

Class      1      2      3      4      5 Total U_Accuracy* Kappa 

     1 - Forest 167 0 3 8 10 188 0.89 0 

     2 - Wetlands 0 6 1 0 0 7 0.86 0 

     3 - Crops 1 0 52 1 0 54 0.96 0 

     4 - Urban 3 0 4 127 3 137 0.93 0 

     5 - Pastures 14 0 7 4 15 40 0.38 0 

Total 185 6 67 140 28 426 0 0 

P_Accuracy* 0.90 1 0.78 0.91 0.54 0 0.86 0 

Kappa 0 0 0 0 0 0 0 0.80 

*U_Accuracy or "User's accuracy" shows what percentage of pixels were classified accurately, but also 
includes false positives, also known as type I error. Meanwhile, P_Accuracy or "Producer's accuracy" shows 

what percentage of pixels were classified correctly, including false negatives, also known as type II error. 

 
 
 
 
 


