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1. Abstract
In October 2015, the state of South Carolina experienced a recording-breaking precipitation event leading to detrimental flooding that caused 19 fatalities and over one billion dollars of damages, which has prompted researchers and resource managers to enhance their understanding of extreme precipitation. This project explored multiple satellite-derived Quantitative Precipitation Estimates (QPE) in an effort to capture historical extreme precipitation patterns and risk-prone areas in both South Carolina and the greater southeastern United States. Using NASA Earth observations and NOAA Climate Data Records, we analyzed the benefits of using short-term, high-resolution datasets to measure extreme precipitation patterns compared to surface observations. Satellite observations included NASA’s Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) mission, as well as NOAA’s Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR). Surface observation records were retrieved from the Global Historical Climatology Network-Daily (GHCN-D) estimates, a network of global rain gauge stations. The team highlighted areas prone to extreme precipitation with bias adjusted precipitation estimates. Results also assessed variability in precipitation measurements for recent years in an effort to integrate high-resolution QPE into regional climate resilience planning and to address spatial gaps in surface observation datasets. This project served to provide a better understanding of climate stressors for the Carolinas and to pose a discussion on effective methods of developing climate resilience practices integrated with satellite-derived datasets. 
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[bookmark: _gjdgxs]2. Introduction
2.1 [bookmark: _30j0zll]Background Information
With increasing sea level, coupled with more frequent and intense rainfall events over the past several decades, the threats associated with extreme precipitation, such as flooding, landslides, and erosion, have become a pressing matter for the Carolinas. In fact, the mayor of Charleston declared in the 2018 State of the City Address that flooding is the city’s “top long-range priority” (Tecklenburg, 2018). The coastal areas of North Carolina (NC) and South Carolina (SC) are situated on the western side of the Atlantic basin. Both NC and SC are characterized by barrier islands, sounds, estuaries, and low-lying population centers in coastal regions. The landscape transitions to a central piedmont region, as elevation increases towards the mountainous western areas of the states. Tropical cyclones (TC’s) have been suggested to frequent the coast of NC more than any other location in the Atlantic basin (Konrad and Perry, 2010). Although TC’s are prevalent to the states of interest, there are other weather phenomena that bring heavy precipitation to the area (Prat and Nelson, 2013). Due to these other phenomena, it is necessary to not only focus on Tropical Cyclone Season (June-November) but all months of the year. In October of 2015, a 1,000-year return level precipitation event devastated SC over the course of four days (Murphy, 2016). The extreme precipitation in October of 2015 was the result of interaction between synoptic scale features near SC and Hurricane Joaquin as it was located in the Atlantic Ocean Basin. Flooding associated with this precipitation caused $1.492 billion dollars in damages and 19 casualties (Murphy, 2016). 

Because of the impacts associated with extreme precipitation, researchers have been interested in accurately evaluating precipitation estimates from satellite-derived measurements that address spatial gaps in in situ datasets. Prat and Nelson (2013) used satellite data products from TRMM to measure the precipitation contribution of TC’s in the southeastern United States. This study derived seasonal, monthly, and daily precipitation characteristics over the region, overlain with TC events in the study area. Their results yielded that TC’s were responsible for a critical number of heavy rainfall events. 

Prat and Nelson (2015) further evaluated QPE’s derived from satellite, radar, and rain gauge data products for the contiguous United States. They investigated the ability of the QPE products to observe and display precipitation patterns from 2002 to 2012, which led to a finding for agreement among satellite-derived data, modeled data, surface observations, and radar data on the annual basis. On the seasonal scale, satellite-derived near real-time TRMM Multi-satellite Precipitation Analysis (TMPA-RT) data displayed bias for winter and summer seasons that could be marked as underestimation and overestimation respectively. During heavy precipitation events, daily estimates by the bias-adjusted TMPA displayed bias. The National Centers for Environmental Prediction (NCEP) Stage IV radar data were able to improve on bias-affected TMPA data. Again, the near real-time TMPA was unable to display extreme precipitation accurately.

This study builds upon the research of Prat and Nelson (2015) to further evaluate QPE’s and extreme precipitation measurements throughout the southeastern United States with a focus on NC and SC. With the amount of research that has been done on QPE’s, this project focused primarily on datasets that have not been as well-studied, specifically IMERG. Therefore, the project team highlighted newer satellite-derived data products from IMERG and TRMM, which have short-term, high resolution capabilities and have not been well-studied in comparison to PERSIANN which has long-term records and products that have been studied by many researchers; the datasets assessed in this research span from 1983 to 2017, with the years of all sets overlapping being 2014 to 2017. Additionally, the project team also evaluated the ability of the satellite-derived data products to measure precipitation compared to rain gauge data over both the long-term and overlapping time periods. 

2.2 Project Partners & Objectives
The partners for this project are NOAA’s Office for Coastal Management (OCM) and the University of North Carolina Asheville’s National Environmental Modeling and Analysis Center (NEMAC). NEMAC is interested in integrating the findings of this project into NOAA’s Climate Resilience Toolkit. The methods used will help determine what data is most useful for resilience planning. The Climate Resilience Toolkit is used by regional city planners, community leaders, natural resource managers and organizational decision makers. OCM works with resource managers and decision makers at the local, national, and regional levels. OCM will serve as the primary end-user this project’s data product and use the information to communicate with resource managers and decision makers. Currently, these partners do not emphasize their use of satellite data products, so this project serves to bridge the gap between their resilience planning efforts and their knowledge and access to reliable precipitation data from satellite products.
[bookmark: _1fob9te]3. Methodology
3.1 Data Acquisition 
This project used remotely-sensed satellite datasets from NASA and NOAA repositories. The PERSIANN data were available through the NOAA National Centers for Environmental Information (NCEI) data archives, via FTP access. PERSIANN-CDR provides global daily precipitation estimates at quarter degree resolution from 60°S to 60°N latitude. The team derived precipitation estimates from the PERSIANN algorithm that primarily uses gridded infrared brightness temperature data from geostationary satellites (GridSat-B1) in conjunction with passive/active microwave sensor data from low Earth orbit satellites. PERSIANN-CDR was highlighted for its spatial coverage compared to radar date, relative accuracy to gauge observations, and long-term (30+ year) records (Ashouri et al., 2015). 

NASA Earth observations include the TRMM Multi-satellite Prediction Analysis (TMPA), and the GPM Integrated Multi-satellite Retrievals (IMERG). TMPA is a merged microwave-infrared product derived from two sets of sensors: microwave low Earth orbit satellites and infrared geosynchronous Earth orbit satellites. Each sensor was gauge-adjusted through the TMPA algorithm. This study accessed the 3B42 TMPA Research Derived Daily Product from the NASA Earth Data repository. The Research Derived Daily product is a post-real time, research-quality product (Huffman, 2007). 

The IMERG dataset represents an improved successor to the TRMM data products. Launched in 2014, the IMERG satellite extend to higher latitudes than TRMM and provides higher-resolution data. The improved sensors are more sensitive to light precipitation events (Huffman, 2015). This study accessed daily IMERG datasets from the NASA Earth Data repository. Table 1 describes the list of satellite products and other datasets used in this project.

Table 1: 
List of datasets used in project

	Dataset Name
	Parameter
	Time-Range
	Spatial Resolution
	Source

	GPM - IMERG
	Precipitation Estimates
	March 2014-present
	.01 x .01
	NASA Earth Observation

	PERSIANN-CDR
	Precipitation Estimates
	1983-present
	.25 x.25
	NOAA Climate Data Record

	TRMM TMPA
	Precipitation Estimates
	1998-present
	.25 x.25
	NASA Earth Observation 

	GHCN-D
	Precipitation Estimates
	1950-present
	in-situ
	NOAA land-based stations




3.2 Data Processing
Satellite-derived data products were available in netCDF file format. This study used daily products, and first processed the data to be subset to the study domain. The study domain includes the southeastern United States and is bound by the coordinates: 24°N to 40°N and 104°W to 72°W. This domain extends well beyond the Carolinas to provide additional information for an extension of the Atlantic coast and Gulf coast. After setting the data to the area and parameters of interest, this study further processed and analyzed data based on the type of end-product. Figure 1 shows the subset of data to the study area.

[image: ]

Figure 1. Study area of the project includes the greater southeastern United States and focuses on the states of North and South Carolina. 

3.3 Extreme Precipitation Calculation 
The team examined extreme precipitation in three ways. The first was through analysis of extreme percentile values, followed by visualizing threshold exceedance and finally by extreme events. 



3.3.1 Extreme Percentile Values 
To examine extreme percentiles and probability distributions of rainfall in NC and SC, the team focused on the extracted data with cumulative distribution functions (CDF) and scatterplots. These charts represent precipitation estimates of both GHCN-D and all three satellite products. One value pair is a GHCN-D estimate and a satellite estimate. Each pair is further referenced by the gauge location, day, and the specific satellite. For the purpose of representing the CDF and scatterplot, only the values greater than zero, also described as rainy days, and a corresponding time period need be considered. Both the CDF’s and scatterplots were drawn for each satellite and gauge pair over both the entire period of record and period of overlap for these products. For the purpose of the analysis, CDF’s of each satellite were examined for differences at or above the 90th percentile, holding time constant for these comparisons. Scatterplots represent the same gauge value pairs as above, although the points are plotted as points in the x-y plane. Scatterplots were used to examine the spread, linearity, and bias of the satellite and gauge estimates. 
3.3.2 Threshold Exceedance
The project team further examined extreme precipitation through threshold exceedance. For this project, the team defined exceedance as the number of days in a given time period recorded above a certain daily threshold value. The threshold values included 1 in/day, 2 in/day, and 4 in/day, which correspond to approximately the 90th, 95th, and 99th percentile values for daily rainfall in North and South Carolina. The team computed exceedance for the overlapping time period of satellite records. For the time period of interest, the team calculated exceedance by getting a count of days recorded above each threshold value and dividing by the number of years in the given time period to output a netCDF file that contains a value of the average number of days of exceedance per year for each cell location. The team displayed the netCDF files as gridded maps across the study domain. Furthermore, the team calculated the contribution of average rainfall accumulation occurring during exceedance days to the average yearly rainfall accumulation for locations of interest, such as the city of Charleston, South Carolina. The team calculated the contribution by summing the precipitation accumulation on days above the given threshold values and dividing by the number of years in the time period to determine the average exceedance accumulation per year. Next, the team divided the exceedance accumulation by the average annual accumulation for the time period to determine the average contribution in percent of exceedance days to the annual accumulation. 

 3.3.3 Extreme Event Accumulation
The third method the team used to examine extreme precipitation was through extreme event analysis. The team defined extreme events as precipitation accumulation related to tropical cyclones (tropical storms or hurricanes). The team engaged the project partners to identify a list of tropical cyclone-related events that had significant impact in the Carolinas in the most recent three years since 2015 and in the past 30 years of satellite record. The project partners identified this list based on local knowledge of precipitation impacts, and Table 2 shows the list of highlighted events. For each satellite product, the team calculated the sum of daily rainfall during the time period of each event to determine total event-related accumulation and displayed this information as a gridded map across the study domain. Furthermore, the team calculated the contribution as a percent of the event-related precipitation to the total precipitation for the year of event occurrence by dividing the event accumulation sum by the total sum of rainfall for that year as locations of interest. 

Table 2
List of tropical cyclone events and the associated dates of occurrence that resulted in heavy precipitation in the Carolinas. 

	Event (Tropical Cyclone Name)
	Dates of Occurrence

	Hurricane Hugo
	10 Sept – 25 Sept 1989

	Hurricane Floyd
	7 Sept – 19 Sept 1999

	Hurricane Frances
	24 Aug – 10 Sept 2004

	Tropical Storm Ana
	8 May – 12 May 2015

	Hurricane Joaquin
	29 Sept – 7 Oct 2015

	Tropical Storm Bonnie
	27 May – 9 June 2016

	Hurricane Hermine
	28 Aug – 8 Sept 2016

	Tropical Storm Julia
	13 Sept – 21 Sept 2016

	Hurricane Matthew
	25 Sept – 10 Oct 2016




3.4 Bias Calculation
This project considered both unconditional bias and bias at the extreme percentiles (i.e. greater than 90). The bias for each satellite was calculated for the entire period of record, with the GHCN-D value being set as the true value of precipitation for all cases. The initial step was to use the same gauge and satellite pairs used in the CDF’s and scatterplots as the values for precipitation recorded by the gauge and satellite. When determining unconditional bias, the ratio of the satellite value to the gauge value was calculated for each pair as long as there was precipitation on that day. Each of the individual precipitation values at the gauge and satellite were summed prior to taking the ratio that would give the bias for the gauge location. This was done for every gauge location in NC and SC. 
To determine conditional bias, the same gauge satellite pairs were utilized once again. This time the team used the CDF as a condition on the gauge. Only gauges that reported precipitation greater than or equal to the percentile value of precipitation were considered and summed. Again, the satellite was summed as long as there was precipitation. The ratio was then taken of the satellite value to the gauge value. The result only returned bias for NC and SC gauges that had values that were greater than or equal to the percentile precipitation value.
[bookmark: _74i6856k4pkf]4. Results & Discussion
4.1 Analysis of Extreme Precipitation Calculations
Upon extracting the aforementioned satellite data from both NOAA and NASA Earth observations, a variety of analyses were conducted. Initially, the data were subset spatially, to a region that covers Houston, Charleston, and the coastal Carolinas. The precipitation data were then extracted over this area of interest. To accommodate the precipitation data and serve as a vital comparison point in most of the analysis, on-the-ground measures of precipitation were also considered. Such measures were drawn from NOAA GHCN-D rain gauge networks in the above referenced area.

4.1.1 Analysis of Extreme Percentile Values
The plots produced as per the analysis in the referenced area illustrate the probability density function (PDF) and cumulative density function (CDF) among others. The PDF represents how likely given values of rainfall are to occur as well as how the data are spread and distributed. The PDF of rainfall is skew right That is, most of the data falls in the lower range of values, clustered about zero mm per day. This is what one would expect given a large percentage of days there is a lack of precipitation, and extreme precipitation events represent less than 10% of all rainfall events (Prat and Nelson, 2015). In the same light, the CDF plot illustrates what percentage of days fall below various markers of precipitation. For the extract data over the area of study, we see a very low value of precipitation for the median value and a very high value for the 95th percentile, partially explained by the likelihood of rainfall in these amounts. This suggests that a less rain is common, and increased rain is uncommon, although not impossible, such as a 100-year flood event. This event is referred to as equally-likely as occurring once every 100 years, given that the associated levels of rainfall are extremely high. Examination of PDF’s, CDF’s and scatterplots was conducted for each satellite product across the Carolinas as a whole, on a statewide basis, and also on a citywide basis.  
Viewing the data over the spatial region lent valuable insight as to how precipitation is distributed and how likely extreme values or extreme rain events are likely to occur. Additionally, it allowed valuable insight into how such satellite measures compare systematically to the GHCN-D rain gauge network. In the Carolinas, the GHCN-D network spans 607 rain gauges, many of which constituted a direct comparison to the various satellite measures at these gauge locations. An initial look at the temporal span of overlap (2014-2016) between IMERG, PERSIANN, and TRMM illustrates immediate differences between each satellite product, in particular at the extremes (Figure 2). That is, at the 90th percentile and above. Near the 50th percentile, differences can be seen if TRMM is compared to both IMERG and PERSIANN products. As we move up the distribution, or to higher percentiles, we observe similar differences until we approach the 80th percentile. A clear distinction between each satellite can be seen at or above this point, with the largest differences occurring at the 90-95th percentiles. Given a steeper curve illustrates underestimation of higher percentiles or extreme rainfall events, Figure 2 not only displays the differences between such products, but the satellite that best captures the extremes. The CDF of TRMM rain events falls the lowest on the plot, thus best accommodating the extreme events of interest. A further comparison of all satellite measures to rain gauges can be seen in Figure 3. The rain gauge CDF (blue line) nearly falls on top of the TRMM satellite product. This near one to one matching further illustrates TRMM’s ability to capture extreme values conditional upon the gauge as a true value. Of additional importance is the variation in precipitation measurements occurring at the satellite level. With an interest in extremes, low variation in the measurement of the satellite’s value as compared to the rain gauge at high percentiles is ideal. Conversely, when interested in climatological values or seasonal averages, these variations are averaged out. Therefore, a satellite with the longest period of record would be ideal, as with large sample sizes these variations are washed out. 
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Further evaluation of satellite-to-gauge comparisons in the Carolinas was visualized with scatterplots. The scatterplots presented in Appendix A1 demonstrate the spread of rainfall events and biases of each satellite for the period of overlap, 2014-2016. These plots also aim to capture any dependency or linear relationship between the gauge measure and the satellite’s measure. That is, it can discover if the gauge estimate can serve as a predictor for the satellite’s estimation. Each point is the precipitation in mm when both the gauge and satellite report rain for a given day. A quantile plot has been transposed, of which illustrates how the quantiles of gauge measures compare to satellite measures, which are corresponding percentile or quantile values we observe in the CDF’s. These plots further illustrate PERSIANN’s tendency to underestimate extremes with a curvilinear tendency in its quantiles. The quantiles of TRMM and PERSIANN satellite products fit well in terms of the gauge at low percentiles and throughout rain rates of 100-150 mm. As one would expect, biases begin to take place for these products given variation in precipitation is large at these percentiles. Additionally, since TRMM and IMERG products best match the gauge quantiles at the extremes and also perform relatively well at the lows; these two satellites can serve an extensive period of record as they encompass the same geospatial resolution. Further insight can be gleaned from the packing of the data. The scatterplot of the PERSIANN product presents more tightly-packed data about the origin, where rainfall for both instruments is in the range of 0-50 mm. Viewing the same time period for the TRMM satellite product presents a much more loosely packing, highlighting there is variance even at low values of precipitation that these satellites are or are not capturing. Further investigation in the future would provide more information as to each satellite’s ability to capture such variation, conditional upon various percentile ranges.  This investigation would also provide a more detailed comparison of each satellite product. 
The drastic difference between TRMM and PERSIANN demonstrate biases at the high percentiles of PERSIANN for the distribution of rainfall in the Carolinas. These differences can also be examined further, with each satellite’s CDF and scatterplot for both states for the gauge and satellite, over their respective periods of record, seen in Appendix A2.1-2.2. These figures illustrate percentile differences at both the gauge and satellite level. We see large differences in extreme percentile ranges, that is 90th,95th, and 99th, further instantiating our earlier observations. Likewise, we see a fuller picture of bias at the same quantiles, pictured in the red region of the scatterplots seen in Appendix Figures A2.3-2.4. We observe similar relationships when compared to just the three years of overlap first examined. The cluttering of points in these plots includes all reporting gauges in the entirety of the Carolinas. This presents come concern given reporting error and unavailability during time intervals. In this light, a measure of what constitutes a ‘best’ gauge is an investigative area in the future. 

4.1.2 Analysis of Threshold Exceedance
Analysis of threshold exceedance showed consistent patterns for each satellite products at each threshold value (1, 2, & 4 in/day). The threshold values of 1, 2, and 4 in/day generally correspond to the top 10%, 5%, and 1% of daily rainfall values in the regions, according to the cumulative distribution functions. All satellite products showed that coastal regionals in the Carolinas experienced more days of exceedance for each threshold level than the inland regions (piedmont & mountains) of both states. The PERSIANN product consistently recorded fewer days of exceedance and, subsequently, less accumulation from days of exceedance compared to TRMM and GPM for the overlapping time period of record (April 2014 – July 2017) at each threshold value. Table 3 displays the number of exceedance days, average threshold accumulation, and in the contribution of threshold accumulation to annual accumulation in percent at population centers in the Carolinas. For example, PERSIANN recorded 7-12 days per year of exceedance at the 1in/day level in coastal regions, while TRMM and IMERG recorded 16-20 days per year for the same locations. At the 1in/day threshold value, the threshold accumulation account for 24-32% (PERSIANN) or 50-63% (TRMM and IMERG) of the average annual accumulation. This result shows the approximately top 10% of daily rainfall measures account for a quarter to a half of the annual water budget, depending on satellite product observed. However, all satellite product recorded similar measures for average annual accumulation throughout the region with the largest different being 6 inches between the PERSIANN and TRMM/IMERG measurements in Raleigh, NC. While the satellite products differ greatly in measurement of threshold exceedance and accumulation, they do show similarities when accumulating across all observed rainfall values (>0.01 inches). Appendix B displays gridded maps of threshold exceedance and accumulation across the study domain. 

 
















Table 3
Threshold exceedance counts in days per year, accumulation from exceedance days, and % of annual average accumulation from exceedance accumulation for population centers in the Carolinas at 1, 2, and 4 in/day threshold values during the overlapping period of satellite record (April 2014 – July 2017).
	
	
	
	Threshold Value: 
1 in/day
	Threshold Value: 
2 in/day
	Threshold Value: 
4 in/day

	City Name (Airport Code)
	Satellite Product
	avg. annual accumulation (in)
	no. exceedance days
	avg. threshold accumulation (in)
	threshold contribution to annual
	no. exceedance days
	avg. threshold accumulation (in)
	threshold contribution to annual
	no. exceedance days
	avg. threshold accumulation (in)
	threshold contribution to annual

	Charlotte, NC (CLT)
	PERSIANN
	47.3
	4.8
	7.1
	15%
	1.2
	2.8
	6%
	0
	0.0
	0%

	
	TRMM
	45.5
	12
	20.8
	46%
	3
	7.8
	17%
	0
	0.0
	0%

	
	IMERG
	47.6
	11.7
	19.0
	40%
	1.8
	5.1
	11%
	0.3
	1.2
	3%

	Raleigh, NC (RDU)
	PERSIANN
	47.8
	5.7
	8.3
	17%
	1.2
	3.0
	6%
	0
	0.0
	0%

	
	TRMM
	53.6
	14.7
	25.6
	48%
	3.3
	9.0
	17%
	0.3
	1.6
	3%

	
	IMERG
	53.6
	15.6
	23.7
	44%
	2.7
	7.7
	14%
	0.3
	1.5
	3%

	Charleston, SC (CHS)
	PERSIANN
	56.3
	7.8
	13.5
	24%
	1.2
	4.6
	8%
	0.6
	2.6
	5%

	
	TRMM
	55.2
	16.5
	30.7
	56%
	4.2
	14.0
	25%
	0.9
	4.8
	9%

	
	IMERG
	58.8
	15.3
	29.9
	51%
	4.2
	14.8
	25%
	0.9
	5.4
	9%

	Columbia, SC (CAE)
	PERSIANN
	50.9
	6.3
	10.5
	21%
	1.5
	4.5
	9%
	0
	0.0
	0%

	
	TRMM
	51.5
	12.9
	22.7
	44%
	3.3
	9.6
	19%
	0.6
	3.1
	6%

	
	IMERG
	52.8
	12
	22.3
	42%
	3.3
	10.3
	20%
	0.6
	3.5
	7%

	Wilmington, NC (ILM)
	PERSIANN
	61.1
	12.3
	19.7
	32%
	3
	7.8
	13%
	0.3
	1.2
	2%

	
	TRMM
	60.5
	18.6
	37.9
	63%
	7.2
	20.9
	35%
	0.9
	4.8
	8%

	
	IMERG
	64.4
	20.1
	35.3
	55%
	5.7
	17.2
	27%
	0.9
	5.0
	8%



4.1.2 Analysis of Extreme Event Accumulation 
Analysis of extreme event accumulation showed similar patterns across all events, typically Tropical Cyclone (TC) related events. For each event, all satellites generally showed similar regional patterns of precipitation accumulation. Appendix C contains gridded maps of event accumulation. The team inspected the maximum accumulation value recorded for each event to compare the satellite measurements. All satellites generally recorded the same maximum value of precipitation (Table 4). For example, all satellites recorded 10 – 12 inches of maximum accumulation during Hurricane Joaquin-related events.  However, the locations of maximum value differed between satellites. TRMM and IMERG recorded more wide-spread areas of near maximum values, whereas PERSIANN recorded lower values in the corresponding areas. For example, near maximum values (>300 mm or >12 in) during Hurricane Joaquin-related events for TRMM and IMERG spread from coastal to central South Carolina, whereas PERSIANN recorded lower values (150-200 mm or 6-8 in) in the same region most impacted by the event. When comparing the accumulation of the event measured from each satellite to the total accumulation for the year of occurrence, all satellites displayed similar results. Extreme events categorized as hurricanes accounted for 8-30% of the total accumulation in the year of occurrence, while events categorized as tropical storms accounted for 6-14%, depending on event and satellite observed.

Table 4
Maximum value of accumulation for each studied event measured from each satellite product and the percent contribution to total accumulation during year of occurrence.

	Event (Year)
	Measurement
	PERSIANN
	TRMM
	IMERG

	Hurricane Hugo (1989)
	maximum accumulation (in)
	4.8
	N/A
	N/A

	
	percent of annual total at location of max
	14%
	N/A
	N/A

	Hurricane Floyd (1999)
	maximum accumulation (in)
	20.2
	21.8
	N/A

	
	percent of annual total at location of max
	26%
	30%
	N/A

	Hurricane Frances (2004)
	maximum accumulation (in)
	11.2
	13.3
	N/A

	
	percent of annual total at location of max
	18%
	29%
	N/A

	Tropical Storm Ana (2015)
	maximum accumulation (in)
	3.9
	4.7
	6.3

	
	percent of annual total at location of max
	6%
	7%
	9%

	Hurricane Joaquin-related (2015)
	maximum accumulation (in)
	11.8
	13.0
	15.3

	
	percent of annual total at location of max
	18%
	21%
	24%

	Tropical Storm Bonnie (2016)
	maximum accumulation (in)
	7.8
	11.8
	11.0

	
	percent of annual total at location of max
	11%
	16%
	18%

	Hurricane Hermine (2016)
	maximum accumulation (in)
	6.0
	8.7
	9.5

	
	percent of annual total at location of max
	8%
	12%
	16%

	Tropical Storm Julia (2016)
	maximum accumulation (in)
	6.3
	8.3
	7.8

	
	percent of annual total at location of max
	10%
	14%
	12%

	Hurricane Matthew (2016)
	maximum accumulation (in)
	10.1
	11.8
	12.1

	
	percent of annual total at location of max
	19%
	22%
	22%



4.2 Analysis Bias Calculations
Appendix D includes the bias calculations results displayed as charts of the bias measurement between the rain gauge station and the corresponding satellite grid cell. The desired value of bias for an unconditioned case was one. This value of 1 provides information on how well the satellite is reporting precipitation holistically. Through analysis of the unconditional bias charts the satellites do well when reporting with no conditions.  All satellites showed bias at the high percentiles (90th, 95th, and 99th) and tended to underestimate compared to the rain gauge observations. An important note in this analysis is the period of record of each satellite. The time scales of each were different, which could have effect on comparisons of the bias because of the addition of corresponding gauge locations to have higher or lower values. 

4.3 Future Work
Upon conclusion of the analysis conducted by the project team, valuable insight was gained as to the differences between satellite and in-situ precipitation estimates. With respect to the GHCN-D network, rain gauges as mentioned earlier, have the ability to not consistently report precipitation over specific events or time periods. This warrants a further investigation as to what constitutes a ‘best’ rain gauge. A careful selection of ‘best’ gauge metrics would need to first be established. Following, would be an analysis of best gauges by region, time period, and various conditions of the established metrics. The resulting analysis could provide an even deeper understanding as to how the estimates vary from satellite measures and as to where the most reliable rain gauges are located. These locations can then be studied over specific TC events and used as a standard for measuring precipitation in their respective locations. Thus, can provide current users of rain gauges a stronger ability to measure precipitation in addition to furthering comparisons on the satellite to ground level. 
[bookmark: _tyjcwt]5. Conclusions
[bookmark: _3dy6vkm]Our analysis of extreme precipitation in the Carolinas has illustrated the stylized facts of precipitation in the region. By using the valuable rain gauge measures in conjunction with not only PERSIANN, but also the satellite products of IMERG and TRMM, we were able to provide a historical analysis of threshold exceedance, extreme events, and biases at across the Carolinas. Furthered with the GHCN-D rain gauge network, further comparisons between satellite products to in-situ measurements of precipitation in the Carolinas were examined. Differences between IMERG and the other satellite products was distinct and visually indicative of the potential of this new product given a shift in resolution from 0.1-degree to 0.25-degree respectively. A more detailed spatial resolution from the IMERG satellite was also able to lend more information as to how precipitation acts in the Carolinas. The analysis as a whole provided valuable conclusions as to the benefit of NASA Earth observations, and their strengths and benefits of use in conjunction with in-situ measurements. For the time period of record examined, namely 1983-present, NASA Earth observations provided more accurate measures of extreme estimates when compared to the NOAA CDR satellite product, PERSIANN. These satellites also more closely matched GHCN-D precipitation estimates. In terms of spatial coverage, the satellites are more homogeneous. Additionally, this coverage has the ability to operate on a finer time scale, such as 3 hourly, which may be more beneficial for future use in monitoring TC’s. In regards to TC’s, which were responsible for many of the extreme precipitation days, satellites recorded more reliably the accumulation over time, without interruptions. These accumulation values described drastic impacts of TC events on the total annual water budget for the affected regions. Lastly, NASA Earth observation products as a whole provide more information to the user when compared to in-situ estimates.
The analysis conducted by the project team has provided a broad overview of the benefits of satellite derived precipitation estimates. Their spatial coverage, reliability, and accurate measurements provide more reliable information of precipitation in the Carolinas. As a local, state, or regional decision maker, satellite estimates can serve as an additional asset as current practices emphasize the GHCN-D network. The analysis of the project team has shown these estimates can be used to build more resiliency against flooding and extreme precipitation in communities of interest.
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[bookmark: _1t3h5sf]7. Glossary
CDF – Cumulative distribution function
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and biological systems over space and time
GPM – Global Precipitation Measurement mission
IMERG – Integrated Multi-satellite Retrievals for GPM 
NEMAC – National Environmental Modeling and Analysis Center
OCM – Office for Coastal Management 
PDF – Probability distribution function 
PERSIANN – Precipitation Estimates from Remotely Sensed Information using Artificial Neural Networks
QPE – Quantitative Precipitation Estimates 
TC – Tropical Cyclone
TMPA – TRMM Multi-satellite Prediction Analysis
TRMM – Tropical Rainfall Measurement Mission
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9. Appendices

9.1 Appendix AIMERG SCATTERPLOT WITH BIAS 2014-2016 – NC & SC
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Figure A1.1. IMERG scatterplot of Gauge vs Satellite precipitation estimates, 2014-2016 NC and SC (mm per day).
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Figure A1.2. TRMM scatterplot of Gauge vs Satellite precipitation estimates, 2014-2016 NC and SC (mm per day).
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Figure A1.3. PERSIANN scatterplot of Gauge vs Satellite precipitation estimates, 2014-2016 NC and SC (mm per day).
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Figure A2.1.1. TRMM CDF of gauge precipitation estimates with percentile values, 1998-2016, NC and SC (mm per day).
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Figure A2.1.2. TRMM CDF of satellite precipitation estimates with percentile values, 1998-2016, NC and SC (mm per day).
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Figure A2.2.1. PERSIANN CDF of gauge precipitation estimates with percentile values, 1983-2016, NC and SC (mm per day).
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Figure A2.2.1. PERSIANN CDF of satellite precipitation estimates with percentile values, 1983-2016, NC and SC (mm per day).






















9.2 Appendix B

[image: ]
Figure B1.1. Locations of population centers in the Carolinas labeled with airport codes.
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Figure B1.2. Average annual number of rainy days (>0.01”) for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B1.3. Average annual precipitation accumulation for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B2.1. Average exceedance days per year (>1”) for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B2.2. Average annual accumulation from exceedance days (>1”) for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B2.3. Contribution (%) of accumulation from exceedance days (>1”) to average annual accumulation for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B3.1. Average exceedance days per year (>2”) for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B3.2. Average annual accumulation from exceedance days (>2”) for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B3.3. Contribution (%) of accumulation from exceedance days (>2”) to average annual accumulation for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B4.1. Average exceedance days per year (>4”) for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B4.2. Average annual accumulation from exceedance days (>4”) for each satellite product during period of overlap in data record (April 2014 – July 2017).
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Figure B4.3. Contribution (%) of accumulation from exceedance days (>4”) to average annual accumulation for each satellite product during period of overlap in data record (April 2014 – July 2017).














9.3 Appendix C

[image: ]
Figure C1. Precipitation accumulation during Hurricane Joaquin-related events (29 September – 07 October 2015).
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Figure C2. Precipitation accumulation during Hurricane Matthew (25 September – 10 October 2016).








9.4 Appendix D


[image: ]
Figure D1. Unconditional Bias for each satellite’s entire period of record.
[image: ]
Figure D2. 50th Percentile Bias for each satellite’s entire period of record.
[image: ]
Figure D3. 90th Percentile Bias for each satellite’s entire period of record.
[image: ]
Figure D4. 95th Percentile Bias for each satellite’s entire period of record.
[image: ]
Figure D5. 99th Percentile Bias for each satellite’s entire period of record.
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