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1. Abstract
The Ohio River provides the 13-state region of the Ohio River Valley with economic and social benefits through power generation, industrial manufacturing, drinking water, and recreational uses. While the river is an important environmental and economic resource, the valley is prone to numerous flood events that damage the environment, residential areas, and important infrastructure. The fall 2018 NASA DEVELOP Ohio River Valley Transportation and Infrastructure team utilized Landsat 8 Operational Land Imager (OLI) and Sentinel-1 C-band Synthetic Aperture Radar (SAR) data to identify flood events and their intensities and develop flood risk maps of the area. The Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG) and the Shuttle Radar Topography Mission (SRTM) provided precipitation and elevation data used in flood analysis. The team partnered with the Federal Emergency Management Agency, the NOAA National Weather Service Ohio River Forecast Center, the Kentucky Division of Water, and the NASA Short-term Prediction Research and Transition Center (SPoRT) to investigate flood risk throughout the Ohio River Valley, identify key infrastructure at risk, and provide favorable transportation routes during these events. The team found that during a 2018 flood event, 667 miles of major highways were impassible and 16% of all hospitals within the study area were inaccessible. The results of this project will assist forecasters and emergency responders by providing a detailed report of vulnerable populations, at risk infrastructure, and historical impassible route systems.
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2. Introduction
2.1 [bookmark: _Toc334198721]Background Information
The Ohio River Valley depends on the Ohio River for power generation, drinking water, industrial use, and more. However, the valley is prone to flooding that can damage infrastructure and the economy of the region. In February 2018, the Ohio River experienced the worst flood event since 1997, costing over 3.5 million dollars in public damages in Louisville, Kentucky, alone (Novelly, 2018). The study area is 71,300 square miles, covering the Ohio River basin within Indiana, Illinois, and Kentucky, depicted in Figure 1. Some large cities within the area include Louisville, Kentucky; Lexington, Kentucky; and Indianapolis, Indiana.          
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Figure 1. Study area of the Ohio River basin within Kentucky, Indiana, and Illinois.



The study period runs from February 2015 to March 2018. Based on previous work by Cian, Marconcini, & Ceccato (2018), this study used Sentinel-1 Synthetic Aperture Radar (SAR) data for rapid flood mapping using the Normalized Difference Flood Index (NDFI). NDFI is a method of flood mapping which compares a reference SAR image to a flooded image to extract flooded areas (Cian et al., 2018). It has the potential to be used for rapid flood mapping during flood events since there is systematic data acquisition by Sentinel-1, providing imagery to derive current flood extents (Martinis, Twele, & Voigt, 2009; Psomiadis, 2016). SAR has the capability to penetrate clouds and is considered more suitable for emergency response than multispectral imagery (Amitrano, Martino, Iodice, Riccio, & Ruello, 2018). Additional flood mapping was accomplished using the Normalized Difference Water Index (NDWI). NDWI takes multispectral images and determines the extent of water bodies, which can be used to derive flood extent. A combination of these indices increases the temporal resolution of data acquisition during flood events. Flood risk mapping can be accomplished using multi-criteria fuzzy logic based on analyses by Papaioannou, Vasiliades, & Loukas (2015) and Tehrany, Pradhan, & Jebur (2014).  These methodologies influenced the team to use a fuzzy logic approach to depict varying degrees of risk as high, medium, and low using threat and vulnerability factors. The team defined flood risk as a function of flood hazard and vulnerability, based on research conducted by Apel, Aronica, Kreibich, & Thieken (2009). Based on previous flood risk studies, the team considered population density, socioeconomic data, elevation, land cover, precipitation, distance to water, flood extent, and soil hydrologic groups as factors in the analyses (Apel et al., 2009; Tehrany et al., 2014).

2.2 [bookmark: _Toc334198726]Project Partners & Objectives
The NASA DEVELOP team partnered with the NOAA National Weather Service (NWS) Ohio River Forecast Center (OHRFC), the Federal Emergency Management Agency (FEMA), the Kentucky Division of Water, and the NASA Short-term Prediction Research and Transition Center (SPoRT). Local NWS Weather Forecast Offices issue advisories and warnings based on forecasts and include statements on how those forecasts and advisories consist of different flood event aspects, such as road obstruction, precipitation amounts, flood outlooks, etc. FEMA, consisting of 10 regional offices across the United States, provides disaster response and recovery support to state and local authorities through advising, training sessions, and funding. The agency focuses on improving disaster preparedness, protection, and response of the citizens and first responders within each region. Project objectives included detecting flood vulnerable areas within the study area and identifying historical impassable route systems and impacted infrastructure. To meet these objectives, the team created a list of end products to improve partner flood resiliency efforts. Partners can use these end products to assist with decision making by identifying flood risk areas and help with reducing disaster response times by identifying safe routes for emergency services to take during flood events. The Infrastructure Impact Analysis can be used to identify important infrastructure that is vulnerable to being affected by a flood. An ArcGIS Online Story Map was also used to display methodology, results, and end products and highlight the potential use of NASA Earth observations and SAR imagery for flood mapping in the future.
3. Methodology
3.1 Data Acquisition 
The team acquired Level-1 SAR Ground Range Detected (GRD) High Resolution Dual-Pol Sentinel-1 data from the Alaska Satellite Facility Data Portal from October 2017 through the beginning of February 2018 and Level-1 Landsat 8 Operational Land Imager (OLI) data from the United States Geological Survey (USGS) EarthExplorer for October 2017 to January 2018 to use as pre-flood reference images. Images from late February 2015 and February through March 2018 provided the team with data to determine flood extents from the 2015 and 2018 flood events. Due to cloud coverage, Landsat 8 OLI data were not collected for the 2015 flood event.

The Shuttle Radar Topography Mission (SRTM) version 3 provided the team with 30-meter resolution elevation data. These data have a vertical accuracy of less than 16-meter in error when compared to ground control point sources, exceeding the performance requirements set by NASA. The team downloaded the SRTM data using the USGS EarthExplorer data portal. The Global Precipitation Measurement (GPM) mission Integrated Multi-Satellite Retrievals for GPM (IMERG) supplied the team with monthly precipitation averages for the study period and were downloaded through the NASA Earthdata Goddard Earth Sciences Data and Information Services Center (GES DISC) portal. Table 1 below summarizes the Earth observations the team used.

Table 1
Earth observations used
	Sensor and Platform
	Date Range
	Database
	Temporal Resolution
	Spatial Resolution
	Parameter

	Sentinel-1A Level-1 SAR
	February 2015 - March 2018
	Alaska Satellite Facility Data Portal
	12 days 
	40 x 40 meter

	Backscatter, NDFI

	Landsat 8 OLI Level-1
	October 2017 - March 2018
	USGS EarthExplorer
	16 days
	30 x 30 meter
	Surface Reflectance, NDWI

	SRTM, version 3 
	2000
	USGS EarthExplorer
	n/a
	1” for global coverage (~30 meters)
	Elevation

	GPM IMERG
	 February 2015 – March 2018
	GES DISC
	Monthly
	0.1° x 0.1° (~11 kilometers)
	Precipitation



The team used several ancillary datasets to determine vulnerable communities in the Ohio River Valley and identify roads and infrastructure that were impacted during flood events. The Oak Ridge National LandScan population dataset (2016) provided the team with population density throughout the region. The Agency for Toxic Substances and Disease Registry (ATSDR) provided the team with a social vulnerability index (SVI) (2016) that identified the socioeconomic status of the region. Using infrastructure data from the Homeland Infrastructure Foundation-Level Data (HIFLD) (2018), the team identified critical infrastructure, such as emergency medical services (EMS), that are at a higher risk of flooding. The US Census Bureau Topologically Integrated Geographic Encoding and Referencing (TIGER) dataset provided primary and secondary roads throughout the study area (2017). Soil runoff potential is important when determining what land will be more vulnerable to flood waters. To examine this, the team used the United States Department of Agriculture (USDA) National Resources Conservation Service US General Soil Map (STATSGO2) (2003). Finally, the team obtained land cover information from the Cropscape (2017) Cropland Data Layer from the USDA.

3.2 Data Processing
Using the Sentinel Application Platform (SNAP) and Hybrid Pluggable Processing Pipeline (HyP3) from the Alaska Satellite Facility with assistance from SPoRT, the team calibrated imagery and removed noise with speckle filtering. Terrain correction using a Digital Elevation Model (DEM) was the final step in the preprocessing phase. Figures 2 and 3 below illustrate the preprocessing steps required when using SAR data and the output of those procedures.
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Figure 2. Preprocessing procedures performed on SAR imagery.
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Figure 3. Sentinel-1 SAR imagery a) before and b) after image preprocessing (from Sentinel-1A, 2017).
After preprocessing all Sentinel-1 images, the team mosaicked and clipped the images to the study region and calculated NDFI. NDFI compares reference (pre-flood) and flood images to identify flooded areas. The team used the NDFI calculation below in Equation 1, where  = backscatter, and determined a threshold to separate flooded from non-water pixels using empirical analysis.  To remove random flood pixels due to image speckling, the team applied a filter and removed superfluous flood pixels. The result of the equation is shown below in Figure 4. 
    				  	 	                                   (1)               	
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Figure 4. 2018 flood extent derived using NDFI. Created using Sentinel-1 C-Band SAR data (2015 - 2018).


Using Landsat 8 OLI imagery, the team calculated NDWI from before the February flood event, during the flood event, and subtracted the two to find the anomalous water. To do this, the team mosaicked all of the band 3, green, and band 5, near-infrared (NIR), images separately before plugging them in the NDWI in Equation 2. After running the calculation in ArcMap, the team classified water as one class and non-water as another class. This calculation provided the team with a pre-flood classification and a post-flood classification, depicted in Figure 5. Due to cloud cover, only a portion of the study area could be calculated this way.

                                                              					   (2)
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Figure 5. 2018 flood extent derived using NDWI. Created using Landsat 8 OLI data (2017 - 2018).
For the Ohio River Valley Flood Risk Map, the team combined the processed Sentinel-1 C-band SAR flood imagery, Landsat 8 OLI flood imagery, GPM IMERG precipitation data, SRTM elevation data and ancillary datasets that made populations more vulnerable to flood events. When first downloaded, the GPM IMERG data were in Network Common Data Form (NetCDF) and the team converted each of the monthly composites to raster format. The team took the average monthly precipitation from GPM IMERG and used “Cell Statistics” to calculate the overall mean precipitation throughout the study period and resampled the rasters to 30x30 meter cell size. This identified locations that experienced the greatest amount of precipitation during the study period. The team then imported 43 SRTM elevation tiles into ArcMap and mosaicked the tiles together using the “Mosaic to New Raster” tool.

The team processed the soil data using the Soil Data Viewer in ArcGIS to acquire the soil hydrologic groups from the STATSGO2 data. In its raw form, the STATSGO2 data are not readable and must be processed using this downloadable toolbar to extract the wanted soil properties. The team resampled them to 30x30 meter cell size, clipped all of the Earth observation and ancillary data, including roads and HIFLD data, to the study area. In order to identify different land cover types throughout the study region, the team used the Cropscape data and reclassified the land types into seven unique classes: water, wetland, urban, barren rock, agricultural land, grassland, and forested land.

Finally, the TIGER data were processed before integration into a Network Dataset. The team calculated attributes for miles, miles per hour (MPH), hours, and minutes using “Calculate Geometry” and “Field Calculator.”  These attributes are necessary for calculating distance and time in a Network Analysis.

3.3 Data Analysis
[bookmark: _Toc334198730]3.3.1 Fuzzy Logic Parameters
To create the Ohio River Valley Flood Risk Map, the team split up the parameters into two different categories: threat and vulnerability. The team created two fuzzy logic map layers based on those categories and combined them to create the overall flood risk of the area. Before creating the fuzzy overlay maps, the team assigned fuzzy membership values to each map input. When creating the threat map layer, the team assigned areas within the flood extent layer, created by combining the NDFI and NDWI calculations, with a membership of 1 and those outside of the extent a membership of 0 (Appendix Figure A8). NDFI, NDWI, and precipitation values merged together to form a flood threat extent raster using “Raster Calculator.” This served as the flood threat raster in the fuzzy membership. Using a linear membership on the precipitation data, areas of high precipitation averages are assigned a membership of 1 for high threat and areas of lower precipitation averages are assigned a membership of 0 for lower threat (Appendix Figure A7).  

To create the vulnerability map layer, the team used a linear membership on the reclassified soil raster, ranking the vulnerability by runoff potential for each hydrologic group. (Appendix Figure A4). Higher population densities are more vulnerable while lower populations are less vulnerable, thus the lowest populations obtained a value of 0 and highest populations a value of 1 (Appendix Figure A3). Lower elevations have an increased vulnerability to flooding; thus, the team used a linear membership to assign those elevations a higher fuzzy classification of 1 (Appendix Figure A1). The team evaluated proximity to water and classified distances of 0 to 50 m and very high vulnerability, 50 to 100 m as high vulnerability, 100 to 250 m as medium-high vulnerability, 250 to 500 m as medium vulnerability, 500 m to 1 km as medium-low vulnerability, 1 km to 5 km as low vulnerability, and over 5 km as very low vulnerability based on a study by Sonmez & Bizimana (in press) (Appendix Figure A6).  Based on a study by Sarmiento & Miller (2006), the team determined that areas of lower and higher socioeconomic status had a higher vulnerability to flooding impacts, and thus reclassified the raster using the “Reclassify” tool. The team then used a linear membership and assigned a 0 to medium incomes and 1 as the income spread from the medium (Appendix Figure A5).  The land cover classes urban, water, and wetland were deemed to have higher vulnerability and assigned a 1; barren rock, agricultural land, and grassland classes were assigned a 0.5; and forested land, deemed to have the lowest vulnerability, was assigned a value of 0 (Hwang, 2017) (Appendix Figure A2).

The team combined the threat map (Figure 6) with the vulnerability map (Figure 7) using the “Fuzzy Overlay” tool in ArcMap. Combining them using the “OR” function highlighted the areas with both high vulnerability and high threat. Using this information, the team determined the areas with the highest flood risk.
Figure 7. Vulnerability map layer created through fuzzy overlay, combining several ancillary datasets.
Figure 6. Threat map layer created through fuzzy overlay, combining the 2015 and 2018 flood extents with the average precipitation data. Created using flood extents determined by Sentinel-1 and Landsat 8 (2015 - 2018) and GPM IMERG precipitation (2015 - 2018) data.



3.3.2 Optimal Route and Impact Analysis
After the flood extent layer was created, the team overlaid the TIGER census road layers.  The “Intersect” tool identified roads and sections of roads blocked by the flood waters, depicted in Figure 8.  In order to calculate the total miles of major roads blocked from a given flood, the “Calculate Geometry” tool calculated the number of miles each blocked road segment contained. The team used this data layer containing only the blocked roads to act as barriers in “Network Analyst”.  Network Analyst tools “Find Routes” and “Closest Facility” were used to identify the optimal routes between EMS, civilian destinations, and hospitals. “Service Area” calculated the distance between each hospital using 5-mile intervals up to 25 miles to detect regions lacking support.

[image: ]
Figure 8. Inset of study area illustrating blocked primary and secondary TIGER road segments during the February 2018 flood near the confluence of the Wabash and Ohio Rivers, as a result from “Intersect”. Created using flood extents determined using Sentinel-1 and Landsat 8 (2015 - 2018) and TIGER (2017) data.

The team overlaid the processed HIFLD data with the flood extent layers and used the “Intersect” tool to identify infrastructure lying within the flood extent. Infrastructure analyzed included hospitals, EMS, fire stations, police stations, dams, water treatment facilities, chemical plants, airports, schools (public and private), colleges, daycares, and retirement homes. Once all data were extracted, the “Table to Excel” tool transferred the attributes from these data into a single spreadsheet that the team used to calculate percentages of infrastructure impacted during a given flood and to identify the names and locations of each facility.
4. Results & Discussion
4.1 Analysis of Results
[bookmark: _Toc334198734]The Ohio River Valley Flood Risk Map (Figure 9) shows high-risk areas throughout the larger cities, such as Sacramento, KY; Paducah, KY; Louisville, KY; New Haven, IL; and Covington, KY, due to the combination of high population density, urban land cover, and socioeconomic status. Sacramento, KY, and Paducah, KY, have a lower population density when compared to the previous cities, but the past flood extents covered most of this area, assigning it a higher risk in the fuzzy overlay. Since the past flood extents were the designated hazard, they carried the most weight in the fuzzy overlay. Thus, the overall risk map tends to follow the flood extent.
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Figure 9. Ohio River Valley Flood Risk Map displaying the populations at the highest risk for flood impacts. Created using flood extents determined using Sentinel-1 and Landsat 8 (2015 - 2018), SRTM elevation data (2008), GPM IMERG precipitation (2015 - 2018), and ancillary datasets.

The Disaster Response Optimal Roadmap depicts roadways and operational facilities blocked during these historical events. The team found that 197 miles and 667 miles of primary and secondary road were blocked during the March 2015 and February 2018 flood events, respectively. The most affected areas during the February 2018 flood event include smaller cities surrounding Evansville, IN, including Mt. Vernon, Henderson, Owensboro, and Union Town, as well as Sacramento, KY. Since data for approximately 49% of the study area are missing for the March 2015 event, the results found may be inaccurate. Additionally, 630 miles of all roads are located in high-risk zones. “Network Analyst” tools detected the quickest route and closest facility around the flood waters. An example of “Closest Facility” finding the nearest hospital is shown in Figure 10.


[image: ]
Figure 10. “Closest Facility” tool in “Network Analyst” locating the closest hospital navigating restricted routes. Data derived from HIFLD (2018).

The Infrastructure Impact Analysis includes the names and addresses of all the infrastructure affected by the March 2015 and February 2018 flood events. It also includes several charts depicting the percentages of each type of infrastructure that was affected by these flood events. The team found that hospitals, colleges, and public schools were most impacted in the March 2015 flood event, and hospitals, colleges, and chemical plants were most impacted in the February 2018 flood event. In 2015, 12% of all hospitals were affected and no dams were affected. In 2018, 16% of all hospitals were affected, with a decrease in nursing homes from 3% to 2%. The results of the analyzed infrastructure can be found in Figure 11 below. The analysis also found that the city with the most impacted infrastructure by both flood events was Louisville, KY. Several different types of important infrastructure were affected by the flooding in this area, including hospitals, airports, and water treatment plants.  
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Figure 11. Impacted infrastructure during a) the March 2015 flood and b) the February 2018 flood. The percentages represent the percent of that specific infrastructure and not the total analyzed. Data derived from HIFLD (2018).


4.2 Future Work
Future projects in this region should incorporate flood models to simulate different degrees of flooding, such as a five-year flood versus a one-hundred-year flood. Different methods of mapping can be used to illustrate the levels of vulnerability in more detail, for example, a bivariate map or a maximum entropy model. The study area could also be extended to cover the full reaches of the Ohio River Basin instead of a smaller area within the region. Examination of more past flood events, such as the 1997 event, should be considered to create a more diverse collection of risk maps based on those events. The creation of a near real-time tool in Google Earth Engine for producing optimal roadmaps using flood extent derived from SAR imagery would be very beneficial to project partners. Validation could be acquired from stream gauge data to verify the flood extent and evaluate water height during the floods. Finally, using OpenStreetMap as a source for road data may eliminate errors with directions and lead to an improved analysis using “Network Analyst”’ specifically in QGIS rather than ArcGIS. 

4.3 Limitations
SAR data contain several cases of image speckling, not all of which can be filtered out. It is possible that randomly placed flood pixels are the result of speckling rather than flooding, even after additional filtering post-NDFI calculation. Lines of pixels along the edges of original SAR images are also misclassified as flood pixels. Filtering helped remove some of these misclassified pixels, but tools to remove line striping are not available in ArcMap. Due to these factors, it is possible that more land is classified as flooded and more road segments were considered inaccessible than in reality.

For the 2015 flood event, SAR data were only available for 35,262 square miles out of the 71,300 square mile study area. Landsat 8 OLI data were not usable for the flood period as all images were covered in clouds. This makes the 2015 flood extent layer incomplete, but it was still used for the creation of the flood risk map. Limited data from an extra flood event layer helped strengthen the team’s analysis as it provides more information than a single flood event.

Directions can be loaded in “Network Analyst” once a route or facility function is completed. However, due to the nature of the TIGER roads data, many roads overlap between each other, adding additional unnecessary directions for partners to navigate when using this tool. 
[bookmark: _Toc334198735]5. Conclusions
The team found that New Haven, IL; Covington, KY; Louisville, KY; Sacramento, KY; and the smaller cities surrounding Evansville, IN, such as Mt. Vernon, IN, were located in the highest risk regions. These smaller cities contained the highest amount of impassable roadways, and the team found that in total, 667 miles of major highways were obstructed in the February 2018 flood for the whole study area. Additionally, the team found that 630 miles of all roads are located in high-risk zones. During the February 2018 flood, 16% of hospitals in the region were obstructed and were among the most impacted. In the March 2015 event, no dams were affected during the flood. Partners can use these results to determine areas vulnerable to flooding and issue advisories prior to a potential flood event.  Knowledge of historical inaccessible route systems provides the partners and community with the ability to navigate efficiently during a flood event, reducing emergency response times. Previously impacted infrastructure provide insight into which facilities could become impacted again if a flood of similar magnitude were to occur, allowing end users to prepare for the shutdown of these facilities.  The team found that while using a combination of Landsat 8 derived NDWI and Sentinel-1 derived NDFI improved the temporal resolution of flood mapping, NDFI provided more data.  While the limitations of this project could skew the results, partners can use the methodology for future events and improve the feasibility of using NASA Earth observations.
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[bookmark: _Toc334198737]7. Glossary
ATSDR – Agency for Toxic Substance and Disease Registry
DEM – Digital Elevation Model
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and biological systems over space and time
EMS – Emergency Medical Services
FEMA – Federal Emergency Management Agency
Flood risk – Function of flood hazard and vulnerability
Fuzzy Logic – An approach to computing based on variables of truth scaled between 0 and 1 rather than Boolean logic (just 0 and 1), as advanced by Dr. Lofti Zadeh in the 1960s
GES DISC – Goddard Earth Sciences Data and Information Services Center
GPM IMERG – Global Precipitation Measurement Integrated Multi-Satellite Retrievals for GPM
GRD – Ground Range Detected
HIFLD – Homeland Infrastructure Foundation Level Data
HYP3 – Hybrid Pluggable Processing Pipeline 
MPH – Miles per hour
NDFI – Normalized Difference Flood Index; calculation based method of flood mapping which compares a reference SAR image to a flooded image to extract flooded areas
NDWI – Normalized Difference Water Index; a calculation that identifies water body within an image using the green band and near-infrared band
NetCDF – Network Common Data Form
Network Analyst – An extension and toolbox in ArcGIS that derives transportation routes within a given area, utilizing road data
NIR – Near-infrared band, derived from satellite imagery
NWS – National Weather Service 
OHRFC – Ohio River Forecast Center 
OLI – Operational Land Imager
SAR – Synthetic Aperture Radar
SNAP – Sentinel Application Platform
SPoRT – NASA Short-term Prediction and Research Transition Center
SRTM – Shuttle Radar Topography Mission
STATSGO2 – National Resources Conservation Service U.S. General Soil Map
SVI – Social Vulnerability Index
TIGER – Topographically Integrated Geographic Encoding and Referencing
USDA – United States Department of Agriculture
USGS – United States Geological Survey
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9. Appendix

Appendix A
Fuzzy overlay inputs for the Ohio River Valley Flood Risk Map

Figure A1. SRTM elevation data; lower elevations have a high fuzzy membership whereas higher elevations have a lower fuzzy membership.
Figure A2. Fuzzy membership derived from the CropScape data layer; the urban land, water, and wetlands classes had the highest vulnerability for flooding while forested land had the lowest.


Figure A3. Population density from the Oak Ridge National Laboratory; high population areas have a high fuzzy membership whereas lower population density areas have a lower fuzzy membership.
Figure A4. Soil data from the USDA General Soil Map; soil with low runoff potential (Hydrologic group D) have a high fuzzy membership whereas soil with high runoff potential (Hydrologic group A) have a lower fuzzy membership.
Figure A5. Socioeconomic data from the ATSDR SVI, using income per capita. Lower and higher incomes have a higher fuzzy membership of 1, while medium incomes have a lower membership of 0.
Figure A6. Distance to major rivers and streams from USGS data created with a multiple ring buffer. Closest areas have a fuzzy membership of 1, while areas furthest away have a membership of 0.

Figure A7. GPM IMERG monthly precipitation averages; areas of high precipitation have a high fuzzy membership whereas areas of lower precipitation have a lower fuzzy membership.
Figure A8. Flood extent created by combining the NDFI and NDWI anomalous water outputs. The flood extent itself has a fuzzy membership of 1 and all over land cover has a membership of 0.
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